论文标题

在$ ads_4/cft_3 $中的(旋转) - 螺旋和氯化

On (spinor)-helicity and bosonization in $AdS_4/CFT_3$

论文作者

Skvortsov, Evgeny, Yin, Yihao

论文摘要

Helicity是AD $ {} _ 4 $和CFT $ {} _ 3 $研究的有用概念。我们计算出完整的广告$ {} _ 4 $/cft $ {} _ 3 $旋转字段/操作员的字典,旋转器基础中的旋转字段/运算符,允许一个人标记任何$ n $ n $ point contact contack contact vertex。 AD $ {} _ 4 $ - vertices编码保守电流,应力调整和更一般而言的相关功能以简单的方式更高的旋转电流。我们为Yang-Mills和重力类型理论撰写字典,并具有较高的衍生化校正以及一些较高的自旋示例,并举例说明了与三维琼脂化二元性的关系。琼脂化可以理解为一种简单的手术:通过缝制(抗)较高的自旋重力来建立顶点/相关因子,可以归因于三维授权二元性二元性(抗独特的证明)。

Helicity is a useful concept both for AdS${}_4$ and CFT${}_3$ studies. We work out the complete AdS${}_4$/CFT${}_3$ dictionary for spinning fields/operators in the spinor-helicity base that allows one to scalarize any $n$-point contact vertex. AdS${}_4$-vertices encode correlation functions of conserved currents, stress-tensor and, more generally, higher spin currents in a simple way. We work out the dictionary for Yang-Mills- and gravity-type theories with higher derivative corrections as well as some higher spin examples and exemplify the relation to the three-dimensional bosonization duality. The bosonization can be understood as a simple surgery: vertices/correlators are built via an EM-duality transformation by sewing together (anti)-Chiral higher spin gravities, to whose existence the three-dimensional bosonization duality can be attributed (up to the proof of uniqueness).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源