论文标题
时间对称的孤子动力 - 布罗格利
A time-symmetric soliton dynamics à la de Broglie
论文作者
论文摘要
在这项工作中,我们开发了一种时间对称的孤子理论,用于由de Broglie和Bohm启发的量子粒子。我们认为明确的非线性klein-gordon理论导致单极振荡孤子。我们表明,该理论能够重现外部电磁场中非相互作用颗粒的试验波解释的主要结果。在这个制度中,使用理论的时间对称性,我们还能够解释几个孤子之间的量子纠缠,并重现了与de Broglie-bohm理论相关的著名的飞行员波。
In this work we develop a time-symmetric soliton theory for quantum particles inspired from works by de Broglie and Bohm. We consider explicitly a non-linear Klein-Gordon theory leading to monopolar oscillating solitons. We show that the theory is able to reproduce the main results of the pilot-wave interpretation for non interacting particles in a external electromagnetic field. In this regime, using the time symmetry of the theory, we are also able to explain quantum entanglement between several solitons and we reproduce the famous pilot-wave nonlocality associated with the de Broglie-Bohm theory.