论文标题
部分可观测时空混沌系统的无模型预测
Crystallizing Kagome artificial spin ice
论文作者
论文摘要
人工旋转台面是偶性耦合纳米磁体的工程阵列。它们能够直接研究来自各种微观物的引人入胜的集体现象。但是,事实证明,在几何沮丧系统中与基础状态的实验访问已被证明是困难的,限制了从低能状态的新型性能和功能的应用。在这里,我们介绍了一种方便的方法,可以控制相邻纳米磁体之间的竞争二氧化合物相互作用,从而使我们能够量身定制地面状态的顶点退化。我们通过调整自旋冰晶格中选定的纳米磁体的长度来实现这一目标。我们通过在kagome人造自旋冰中实现多个低能微晶体,尤其是几乎无法获得的远距离有序的基态 - 旋转晶体状态,从而证明了我们方法的有效性。我们的策略可以直接应用于其他人工旋转系统,以实现异国情调的阶段并探索新的新兴集体行为。
Artificial spin ices are engineered arrays of dipolarly coupled nanobar magnets. They enable direct investigations of fascinating collective phenomena from their diverse microstates. However, experimental access to ground states in the geometrically frustrated systems has proven difficult, limiting studies and applications of novel properties and functionalities from the low energy states. Here, we introduce a convenient approach to control the competing diploar interactions between the neighboring nanomagnets, allowing us to tailor the vertex degeneracy of the ground states. We achieve this by tuning the length of selected nanobar magnets in the spin ice lattice. We demonstrate the effectiveness of our method by realizing multiple low energy microstates in a Kagome artificial spin ice, particularly the hardly accessible long range ordered ground state - the spin crystal state. Our strategy can be directly applied to other artificial spin systems to achieve exotic phases and explore new emergent collective behaviors.