论文标题

Lipschitz连续性保留二进制神经网络

Lipschitz Continuity Retained Binary Neural Network

论文作者

Shang, Yuzhang, Xu, Dan, Duan, Bin, Zong, Ziliang, Nie, Liqiang, Yan, Yan

论文摘要

依靠以下前提:二进制神经网络的性能可以在很大程度上恢复,而完全精确的权重向量与其相应的二进制向量之间的量化错误,网络二线化的现有作品经常采用模型鲁棒性的想法以达到上述目标。但是,鲁棒性仍然是一个不明智的概念,而没有扎实的理论支持。在这项工作中,我们介绍了Lipschitz连续性,即定义明确的功能性能,是定义BNN模型鲁棒性的严格标准。然后,我们建议将Lipschitz连续性保留为正规化项,以提高模型鲁棒性。特别是,尽管流行的Lipschitz涉及正规化方法由于其极端稀疏而经常在BNN中崩溃,但我们将保留矩阵设计以近似目标重量矩阵的光谱规范,该矩阵可以将其部署为BNN的Lipschitz常数,而无需确切的LIPSCHITZ CONTELSCHITZ CONSTER CONSTING CONSTINAL。我们的实验证明,我们的BNN特异性正则化方法可以有效地增强BNN的鲁棒性(在Imagenet-C上作证),从而在CIFAR和Imagenet上实现最新性能。

Relying on the premise that the performance of a binary neural network can be largely restored with eliminated quantization error between full-precision weight vectors and their corresponding binary vectors, existing works of network binarization frequently adopt the idea of model robustness to reach the aforementioned objective. However, robustness remains to be an ill-defined concept without solid theoretical support. In this work, we introduce the Lipschitz continuity, a well-defined functional property, as the rigorous criteria to define the model robustness for BNN. We then propose to retain the Lipschitz continuity as a regularization term to improve the model robustness. Particularly, while the popular Lipschitz-involved regularization methods often collapse in BNN due to its extreme sparsity, we design the Retention Matrices to approximate spectral norms of the targeted weight matrices, which can be deployed as the approximation for the Lipschitz constant of BNNs without the exact Lipschitz constant computation (NP-hard). Our experiments prove that our BNN-specific regularization method can effectively strengthen the robustness of BNN (testified on ImageNet-C), achieving state-of-the-art performance on CIFAR and ImageNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源