论文标题

非等法代码和复杂性的黑洞内部

The black hole interior from non-isometric codes and complexity

论文作者

Akers, Chris, Engelhardt, Netta, Harlow, Daniel, Penington, Geoff, Vardhan, Shreya

论文摘要

量子错误校正为我们​​提供了一种天然的时空出现,但是黑洞的内部为该框架带来了一个挑战:在后期,有效野外理论中明显的内部自由度数量可以极大地超过真正的基本自由度的真实数量,因此不可能具有等值范围(即,内部产品保存)以前的代码为latter latter latter。在本文中,我们解释了如何通过“由计算复杂性保护”的思想来说明如何使用量子误差校正来解释黑洞内部的出现。我们表明,许多以前的想法,例如存在大量“无效状态”,有效的现场理论的分解,指数复杂性操作的有效现场理论,量子的极端表面计算页面曲线的量子极端表面计算,选择后,“依赖于状态/国家/州特定的“操作员”运算符,“简单的熵”方法,“简单的熵”的方法,所有的型号是拟合的,所有的构图都在所有框架中,我们的框架,我们的框架,并以这些框架为生,以至于这些框架,我们的这些框架,我们的这些框架,以这些框架,以这些框架,以这些框架,以这些框架,以这些框架,以这些框架,以下这些框架,我们的这些框架是这些框架,并以这些方式来构成这些框架。可溶性模型。

Quantum error correction has given us a natural language for the emergence of spacetime, but the black hole interior poses a challenge for this framework: at late times the apparent number of interior degrees of freedom in effective field theory can vastly exceed the true number of fundamental degrees of freedom, so there can be no isometric (i.e. inner-product preserving) encoding of the former into the latter. In this paper we explain how quantum error correction nonetheless can be used to explain the emergence of the black hole interior, via the idea of "non-isometric codes protected by computational complexity". We show that many previous ideas, such as the existence of a large number of "null states", a breakdown of effective field theory for operations of exponential complexity, the quantum extremal surface calculation of the Page curve, post-selection, "state-dependent/state-specific" operator reconstruction, and the "simple entropy" approach to complexity coarse-graining, all fit naturally into this framework, and we illustrate all of these phenomena simultaneously in a soluble model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源