论文标题

通过动态环境分析游戏的耦合方法

A Coupling Approach to Analyzing Games with Dynamic Environments

论文作者

Collins, Brandon C., Xu, Shouhuai, Brown, Philip N.

论文摘要

游戏中的学习理论已广泛研究了代理人通过优化固定效用函数而动态反应的情况。但是,在实际情况下,战略环境因过去的代理选择而变化。不幸的是,能够对静态环境游戏中新兴行为进行丰富表征的分析技术无法应对动态环境游戏。为了解决这个问题,我们使用概率耦合开发了一个通用框架,以将静态环境游戏的分析扩展到动态游戏。使用这种方法,我们获得了足够的条件,在这些条件下,具有最佳响应动态的NASH均衡表征和对数线性学习的随机稳定性可以扩展到动态环境游戏。作为一个案例研究,我们在公司之间建立了一个网络威胁智能共享的模型,并且在流行病中的一个简单的社会预防措施的动态游戏理论模型,这两种模型都具有动态环境。对于这两个示例,我们都会通过对参考静态环境游戏进行传统分析来获得在动态游戏中表征出现行为的条件。

The theory of learning in games has extensively studied situations where agents respond dynamically to each other by optimizing a fixed utility function. However, in real situations, the strategic environment varies as a result of past agent choices. Unfortunately, the analysis techniques that enabled a rich characterization of the emergent behavior in static environment games fail to cope with dynamic environment games. To address this, we develop a general framework using probabilistic couplings to extend the analysis of static environment games to dynamic ones. Using this approach, we obtain sufficient conditions under which traditional characterizations of Nash equilibria with best response dynamics and stochastic stability with log-linear learning can be extended to dynamic environment games. As a case study, we pose a model of cyber threat intelligence sharing between firms and a simple dynamic game-theoretic model of social precautions in an epidemic, both of which feature dynamic environments. For both examples, we obtain conditions under which the emergent behavior is characterized in the dynamic game by performing the traditional analysis on a reference static environment game.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源