论文标题
具有确定性位置和方向的单分子的DNA自组装
DNA self-assembly of single molecules with deterministic position and orientation
论文作者
论文摘要
理想的纳米化方法应允许组织纳米颗粒和分子具有纳米位置精度,化学计量控制和定义明确的方向。 DNA折纸技术已演变为一种高度用途的自下而上的纳米制作方法,该方法几乎满足了所有这些特征。它可以具有化学计量控制的分子和纳米颗粒的纳米定位,甚至可以沿预定方向的不对称纳米颗粒的方向。但是,定向单个分子一直是一个坚定的挑战,这主要是由于静电相互作用的非特异性造成的。在这里,我们展示了如何通过将它们链接到寡核苷酸链的同时,同时留下足够的不属底基以诱导拉伸力来诱导单个分子(即Cy5和Cy3荧光团)如何并将其掺入具有控制方向的DNA折纸中。特别是,我们探讨了离开0、2、4、6和8个未配对的碱基的影响,并找到了0和8未配对碱基的极端取向,对应于垂直于垂直的分子并平行于DNA双螺旋。我们预见,这些结果将扩大DNA折纸的应用领域,以制造纳米版本,涉及各种取决于取向的分子相互作用,例如能量传递,分子间电子传输,催化,催化型分离量化,或者,造成分解,分离式分离量,或分子对特定荷兰的电磁促进对特定的共鸣剂Nanano-Annano-Ansens Modes。
An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge, mainly due to unspecific electrostatic interactions. Here, we show how single molecules, namely Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving enough unpaired bases to induce a stretching force. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 unpaired bases and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double helix, respectively. We foresee that these results will expand the application field of DNA origami towards the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nano-antennas modes.