论文标题

感知和行动的自由能原则:深度学习的观点

The Free Energy Principle for Perception and Action: A Deep Learning Perspective

论文作者

Mazzaglia, Pietro, Verbelen, Tim, Çatal, Ozan, Dhoedt, Bart

论文摘要

自由能原理及其必然的积极推论构成了一种生物启发的理论,该理论假设生物学作用保留在一个受限制的世界首选状态中,即它们最小化其自由能。在这一原则下,生物代理商学习了世界的生成模型和未来的计划行动,该模型将使代理保持稳态状态,以满足其偏好。该框架使自己在计算机中实现,因为它理解了使其在计算上负担得起的重要方面,例如变异推断和摊销计划。在这项工作中,我们研究了基于主动推断的深度学习设计和实现人造代理的工具,对自由能原理进行了深入学习的呈现,调查工作与机器学习和主动推理领域相关,并讨论与实施过程有关的设计选择。该手稿探究了积极推理框架的新观点,将其理论方面扎根于更务实的事务,为活跃推理的新手提供了实用指南,并为深度学习从业人员提供了研究自由能源原则的实施的起点。

The free energy principle, and its corollary active inference, constitute a bio-inspired theory that assumes biological agents act to remain in a restricted set of preferred states of the world, i.e., they minimize their free energy. Under this principle, biological agents learn a generative model of the world and plan actions in the future that will maintain the agent in an homeostatic state that satisfies its preferences. This framework lends itself to being realized in silico, as it comprehends important aspects that make it computationally affordable, such as variational inference and amortized planning. In this work, we investigate the tool of deep learning to design and realize artificial agents based on active inference, presenting a deep-learning oriented presentation of the free energy principle, surveying works that are relevant in both machine learning and active inference areas, and discussing the design choices that are involved in the implementation process. This manuscript probes newer perspectives for the active inference framework, grounding its theoretical aspects into more pragmatic affairs, offering a practical guide to active inference newcomers and a starting point for deep learning practitioners that would like to investigate implementations of the free energy principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源