论文标题

静态游戏中社会意识行为的关系设计

Relationship Design for Socially-Aware Behavior in Static Games

论文作者

Chen, Shenghui, Bayiz, Yigit E., Fridovich-Keil, David, Topcu, Ufuk

论文摘要

自主代理可以采用社会意识的行为来减少社会成本,模仿动物在自然界中与人类互动的方式。我们提出了一种新的方法来建模具有社会意识的决策,其中包括两个关键要素:有限的合理性和跨性别关系。我们通过引入一种称为“关系游戏”的新型模型来捕获跨关系,并使用量子响应平衡编码代理的有限合理性。对于每个关系游戏,我们定义一个社会成本功能,并制定一个机制设计问题,以优化关系的权重,以最大程度地减少平衡的社会成本。我们通过以两种形式提出该问题来解决平衡的多样性:最小和最小值,分别针对平衡中最高和最低的社会成本的最小化。我们通过解决使用Karush-kuhn-tucker条件定义的最小二乘问题来计算量子响应平衡,并提出了两种预测的梯度下降算法来解决机制设计问题。数值结果,包括两车道的交通拥堵和救护车的交通拥堵,证实这些算法始终达到预期的社会成本。

Autonomous agents can adopt socially-aware behaviors to reduce social costs, mimicking the way animals interact in nature and humans in society. We present a new approach to model socially-aware decision-making that includes two key elements: bounded rationality and inter-agent relationships. We capture the interagent relationships by introducing a novel model called a relationship game and encode agents' bounded rationality using quantal response equilibria. For each relationship game, we define a social cost function and formulate a mechanism design problem to optimize weights for relationships that minimize social cost at the equilibrium. We address the multiplicity of equilibria by presenting the problem in two forms: Min-Max and Min-Min, aimed respectively at minimization of the highest and lowest social costs in the equilibria. We compute the quantal response equilibrium by solving a least-squares problem defined with its Karush-Kuhn-Tucker conditions, and propose two projected gradient descent algorithms to solve the mechanism design problems. Numerical results, including two-lane congestion and congestion with an ambulance, confirm that these algorithms consistently reach the equilibrium with the intended social costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源