论文标题

动态汽车调度和定价:乘车平台的收入和公平性

Dynamic Car Dispatching and Pricing: Revenue and Fairness for Ridesharing Platforms

论文作者

Zhao, Zishuo, Chen, Xi, Zhang, Xuefeng, Zhou, Yuan

论文摘要

乘车平台的一个主要挑战是同时保证利润和公平性,尤其是在驾驶员和骑手的激励措施不一致的情况下。我们专注于调度定价问题,以最大程度地提高总收入,同时使驾驶员和骑手都满意。我们研究了问题的计算复杂性,提供了一种新型的两步定价解决方案,并保证了收入和公平性,将其扩展到随机设置,并开发一种动态(又称学习 - 学习过程)算法,该算法在调度过程中积极收集数据以学习需求分布。我们还进行了广泛的实验,以证明算法的有效性。

A major challenge for ridesharing platforms is to guarantee profit and fairness simultaneously, especially in the presence of misaligned incentives of drivers and riders. We focus on the dispatching-pricing problem to maximize the total revenue while keeping both drivers and riders satisfied. We study the computational complexity of the problem, provide a novel two-phased pricing solution with revenue and fairness guarantees, extend it to stochastic settings and develop a dynamic (a.k.a., learning-while-doing) algorithm that actively collects data to learn the demand distribution during the scheduling process. We also conduct extensive experiments to demonstrate the effectiveness of our algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源