论文标题

伯格曼内核的边界规律性在霍尔德空间

Boundary Regularity of Bergman Kernel in Hölder space

论文作者

Shi, Ziming

论文摘要

令$ d $为$ \ mathbb {c}^n $中的严格pseudoconvex域。假设$ bd \ in c^{k+3+α} $,其中$ k $是一个非阴性整数,$ 0 <α\ leq 1 $,我们表明1)伯格曼内核$ b(\ cdot,w_0) \ in D $; 2)伯格曼对$ d $的投影是一个有限的操作员,从$ c^{k +β}(\ overline d)$到$ c^{k + \ \ \ \ \ {α,\fracβ{2} \}}}}(\ edline d)(\ edimline d)$。我们的结果既改进又概括了大肠杆菌的工作。

Let $D$ be a bounded strictly pseudoconvex domain in $\mathbb{C}^n$. Assuming $bD \in C^{k+3+α}$ where $k$ is a non-negative integer and $0 < α\leq 1$, we show that 1) the Bergman kernel $B(\cdot, w_0) \in C^{k+ \min\{α, \frac12 \} } (\overline D)$, for any $w_0 \in D$; 2) The Bergman projection on $D$ is a bounded operator from $C^{k+β}(\overline D)$ to $C^{k + \min \{ α, \fracβ{2} \}}(\overline D) $ for any $0 < β\leq 1$. Our results both improve and generalize the work of E. Ligocka.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源