论文标题
高阶孤子解决方案及其在不均匀可变系数的动力学Hirota方程
High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation
论文作者
论文摘要
通过使用Riemann Hilbert方法和转换关系,为不均匀的可变系数Hirota方程提供了一系列新的孤子溶液。首先,通过标准的敷料程序,构建了与Riemann Hilbert问题中的简单零相关的N-Soliton矩阵。然后,可以通过从Hirota方程的N-Soliton基质中获得不均匀可变系数Hirota方程的N-溶质矩阵。接下来,使用广义的Darboux变换,可以得出与Riemann Hilbert问题中基本高阶零相对应的高阶孤子解决方案。同样,采用上面提到的转换关系可以导致不均匀可变系数hirota方程的高阶孤子解。此外,分析了海洛塔和不均匀可变系数海洛塔方程的碰撞动力学;基本计算了高级一索子的多素和长期渐近估计值的渐近行为。最值得注意的是,通过分析不均匀可变系数Hirota方程的多岩体和高阶孤子的动力学,我们发现了许多新的波形,例如心形的周期性波浪溶液,O形周期性周期波解决方案等,从未报道过,这些波形在理论和实践中都是至关重要的。
A series of new soliton solutions are presented for the inhomogeneous variable coefficient Hirota equation by using the Riemann Hilbert method and transformation relationship. First, through a standard dressing procedure, the N-soliton matrix associated with the simple zeros in the Riemann Hilbert problem for the Hirota equation is constructed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by a special transformation relationship from the N-soliton matrix of the Hirota equation. Next, using the generalized Darboux transformation, the high-order soliton solutions corresponding to the elementary high-order zeros in the Riemann Hilbert problem for the Hirota equation can be derived. Similarly, employing the transformation relationship mentioned above can lead to the high-order soliton solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic estimates for the high-order one-soliton of the Hirota equation are concretely calculated. Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons of the inhomogeneous variable coefficient Hirota equation, we discover numerous new waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave solutions etc. that have never been reported before, which are crucial in theory and practice.