论文标题

Tutte冲突图的空间版本

A spatial version of Tutte's conflict graph

论文作者

Foisy, Joel

论文摘要

Tutte表明,当且仅当与$ g $的每个周期相关的冲突图是两部分时,图$ g $是平面。我们定义了与非平面图的最大平面子图关联的(不一定是唯一的)签名的冲突图,以便如果$ g $具有平坦的嵌入,则与$ g $的每个最大平面子图相关联的每一个可能的冲突图是平衡的。在这样做时,我们表明,对于每个图形$ g $,带有平坦的嵌入,以及平面子图$ p $ $ g $,$ p $都位于一个仅在$ p $中与$ g $相交的球体。我们猜想$ g $在且仅当每个最大平面子图的$ g $都具有所有可能的冲突图不平衡时,才具有本质上的链接。

Tutte showed that a graph $G$ is planar if and only if the conflict graph associated to every cycle of $G$ is bipartite. We define a (not necessarily unique) signed conflict graph associated to a maximally planar subgraph of a nonplanar graph such that if $G$ has a flat embedding, every possible conflict graph associated to every maximally planar subgraph of $G$ is balanced. In doing this, we show that for every graph $G$ with flat embedding, and a planar subgraph $P$ of $G$, $P$ lies on a sphere that intersects $G$ only in $P$. We conjecture that $G$ is intrinsically linked if and only if every maximal planar subgraph of $G$ has every possible conflict graph unbalanced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源