论文标题

对抗意识的强大对象检测器

Adversarially-Aware Robust Object Detector

论文作者

Dong, Ziyi, Wei, Pengxu, Lin, Liang

论文摘要

作为一项基本的计算机视觉任务,对象检测在深度神经网络的出现中取得了显着的进步。然而,很少有作品探索对象探测器的对抗性鲁棒性,以抵制在各种现实世界中实用应用的对抗性攻击。探测器受到了不明显的扰动的挑战,在干净的图像上的性能下降,并且在对抗图像上的性能极差。在这项工作中,我们从经验上探索了对象检测中对抗性鲁棒性的模型培训,这极大地归因于学习清洁图像和对抗图像之间的冲突。为了减轻此问题,我们提出了一个基于对抗感知的卷积的稳健检测器(鲁棒),以解散在清洁和对抗性图像上模型学习的梯度。 RubustDet还采用了对抗图像歧视器(AID)和重建(CFR)的一致特征,以确保可靠的鲁棒性。对Pascal VOC和MS-Coco的广泛实验表明,我们的模型有效地脱离了梯度,并显着增强了检测鲁棒性,从而保持了清洁图像上的检测能力。

Object detection, as a fundamental computer vision task, has achieved a remarkable progress with the emergence of deep neural networks. Nevertheless, few works explore the adversarial robustness of object detectors to resist adversarial attacks for practical applications in various real-world scenarios. Detectors have been greatly challenged by unnoticeable perturbation, with sharp performance drop on clean images and extremely poor performance on adversarial images. In this work, we empirically explore the model training for adversarial robustness in object detection, which greatly attributes to the conflict between learning clean images and adversarial images. To mitigate this issue, we propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images. RobustDet also employs the Adversarial Image Discriminator (AID) and Consistent Features with Reconstruction (CFR) to ensure a reliable robustness. Extensive experiments on PASCAL VOC and MS-COCO demonstrate that our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源