论文标题
通过Galerkin离散化具有折叠奇异性的快速慢性PDE的几何分析
Geometric analysis of fast-slow PDEs with fold singularities via Galerkin discretisation
论文作者
论文摘要
我们通过Galerkin离散化研究了一个有界域的反应扩散类型的两个部分微分方程(PDE)的奇异扰动的快速慢速系统。我们假设快速变量中的反应动力学实现了通用折叠的奇异性,而慢变量则采用动态分叉参数的作用,从而扩展了对奇异扰动折叠的经典分析。我们的方法结合了光谱Galerkin离散化与几何奇异扰动理论的技术,该技术应用于所得的普通微分方程的高维系统。特别是,我们显示了PDE原始系统的相位空间中不变的慢流形的存在,而经过离散后获得的Galerkin歧管的奇异性,通过几何形式降低了降低或爆炸来描述。最后,我们讨论了这些Galerkin歧管与潜在的慢速歧管之间的关系。
We study a singularly perturbed fast-slow system of two partial differential equations (PDEs) of reaction-diffusion type on a bounded domain via Galerkin discretisation. We assume that the reaction kinetics in the fast variable realise a generic fold singularity, whereas the slow variable takes the role of a dynamic bifurcation parameter, thus extending the classical analysis of the singularly perturbed fold. Our approach combines a spectral Galerkin discretisation with techniques from geometric singular perturbation theory which are applied to the resulting high-dimensional systems of ordinary differential equations. In particular, we show the existence of invariant slow manifolds in the phase space of the original system of PDEs away from the fold singularity, while the passage past the singularity of the Galerkin manifolds obtained after discretisation is described by geometric desingularisation, or blow-up. Finally, we discuss the relation between these Galerkin manifolds and the underlying slow manifolds.