论文标题

表面吸附的单个原子各向异性超精细相互作用

Anisotropic hyperfine interaction of surface-adsorbed single atoms

论文作者

Kim, Jinkyung, Noh, Kyungju, Chen, Yi, Donati, Fabio, Heinrich, Andreas J., Wolf, Christoph, Bae, Yujeong

论文摘要

电子和核自旋之间的超细相互作用已通过空间鉴定核自旋而广泛用于材料科学,有机化学和结构生物学作为对局部化学环境的敏感探针。通过鉴定出核自旋,超精细相互作用的各向同性和各向异性成分反过来又为顺磁中心的电子地面特性提供了独特的见解。然而,在具有不同几何位置和核同位素的宏观数量的旋转上,超细相互作用的传统合奏测量平均水平。在这里,我们使用扫描隧道显微镜(STM)与电子自旋共振(ESR)相结合,以测量MGO/AG(100)上氢化titanium(Ti)原子的高精细光谱,从而确定各向同性和各向异性和各向异性高细胞相互作用在单个原子水平上。通过将矢量场ESR光谱与基于STM的原子操纵相结合,我们表征了单个Ti-47和Ti-49原子的完整高精细张量,并确定两种同位素在低调结合位点被吸附的同位素的高精细相互作用的显着空间各向异性。密度功能理论的计算表明,大型高精灵各向异性是由地面电子自旋密度的高度各向异性分布引起的。我们的工作突出了具有ESR-STM单原子高精细光谱的力量,它是揭示具有纳米电子结构的地面电子结构和原子尺度化学环境的强大工具。

Hyperfine interactions between electron and nuclear spins have been widely used in material science, organic chemistry, and structural biology as a sensitive probe to the local chemical environment through spatial identification of nuclear spins. With the nuclear spins identified, the isotropic and anisotropic components of the hyperfine interactions in turn offer unique insight into the electronic ground-state properties of the paramagnetic centers. However, traditional ensemble measurements of hyperfine interactions average over a macroscopic number of spins with different geometrical locations and nuclear isotopes. Here, we use a scanning tunneling microscope (STM) combined with electron spin resonance (ESR) to measure hyperfine spectra of hydrogenated-titanium (Ti) atoms on MgO/Ag(100) and thereby determine the isotropic and anisotropic hyperfine interactions at the single-atom level. By combining vector-field ESR spectroscopy with STM-based atom manipulation, we characterize the full hyperfine tensor of individual Ti-47 and Ti-49 atoms and identify significant spatial anisotropy of hyperfine interaction for both isotopes when they are adsorbed at low-symmetry binding sites. Density functional theory calculations reveal that the large hyperfine anisotropy arises from a highly anisotropic distribution of the ground-state electron spin density. Our work highlights the power of ESR-STM-enabled single-atom hyperfine spectroscopy as a powerful tool in revealing ground-state electronic structures and atomic-scale chemical environments with nano-electronvolt resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源