论文标题

桥接神经活动的信息和动态属性

Bridging the information and dynamics attributes of neural activities

论文作者

Tian, Yang, Li, Guoqi, Sun, Pei

论文摘要

大脑充当处理信息的动态系统。在理解大脑中信息与动态属性之间的联系方面仍然存在各种挑战。本研究追求探讨神经信息功能的特征如何与神经动力学联系在一起。我们试图桥接动态(例如Kolmogorov-Sinai熵)和信息(例如,相互信息和Fisher信息),内容涉及神经种群中刺激触发的随机动力学的指标。一方面,我们的统一分析确定了与信息处理相关的神经动力学的各种基本特征。我们发现神经信息处理过程中神经动力学的动态随机性和混乱程度的时空差异。另一方面,我们的框架揭示了神经动态在塑造神经信息处理中的基本作用。神经动力学在特定条件下会产生编码和解码属性的相反定向变化,并决定了刺激分布的神经表示。总体而言,我们的发现证明了解释神经动态神经信息处理的出现的潜在方向,并有助于了解信息和身体大脑之间的内在联系。

The brain works as a dynamic system to process information. Various challenges remain in understanding the connection between information and dynamics attributes in the brain. The present research pursues exploring how the characteristics of neural information functions are linked to neural dynamics. We attempt to bridge dynamics (e.g., Kolmogorov-Sinai entropy) and information (e.g., mutual information and Fisher information) metrics on the stimulus-triggered stochastic dynamics in neural populations. On the one hand, our unified analysis identifies various essential features of the information-processing-related neural dynamics. We discover spatiotemporal differences in the dynamic randomness and chaotic degrees of neural dynamics during neural information processing. On the other hand, our framework reveals the fundamental role of neural dynamics in shaping neural information processing. The neural dynamics creates an oppositely directed variation of encoding and decoding properties under specific conditions, and it determines the neural representation of stimulus distribution. Overall, our findings demonstrate a potential direction to explain the emergence of neural information processing from neural dynamics and help understand the intrinsic connections between the informational and the physical brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源