论文标题
Earthformer:探索地球系统预测的时空变压器
Earthformer: Exploring Space-Time Transformers for Earth System Forecasting
论文作者
论文摘要
通常,地球系统(例如天气和气候)的预测依赖于具有复杂物理模型的数值模拟,因此计算既昂贵又对领域专业知识的要求很高。在过去十年中时空地球观测数据的爆炸性增长中,应用深度学习的数据驱动模型(DL)为各种地球系统预测任务提供了令人印象深刻的潜力。尽管在其他领域取得了广泛的成功,但作为新兴DL架构的变压器在这一领域的采用有限。在本文中,我们提出了Earthformer,这是一种用于地球系统预测的时空变压器。 Earthformer基于一个通用,灵活和有效的时空注意块,名为Cuboid的注意力。这个想法是将数据分解为立方体,并并行应用立方体级别的自我注意力。这些立方体与全球向量的集合进一步相关。我们对MovingMnist数据集进行了实验,以及新提出的混沌N体MNIST数据集,以验证Cuboid注意力的有效性,并找出Earthformer的最佳设计。关于降水现象和El Nino/Southern振荡(ENSO)预测的两个现实基准测试的实验表明,Earthformer实现了最新的性能。可用代码:https://github.com/amazon-science/earth-forecasting-transformer。
Conventionally, Earth system (e.g., weather and climate) forecasting relies on numerical simulation with complex physical models and are hence both expensive in computation and demanding on domain expertise. With the explosive growth of the spatiotemporal Earth observation data in the past decade, data-driven models that apply Deep Learning (DL) are demonstrating impressive potential for various Earth system forecasting tasks. The Transformer as an emerging DL architecture, despite its broad success in other domains, has limited adoption in this area. In this paper, we propose Earthformer, a space-time Transformer for Earth system forecasting. Earthformer is based on a generic, flexible and efficient space-time attention block, named Cuboid Attention. The idea is to decompose the data into cuboids and apply cuboid-level self-attention in parallel. These cuboids are further connected with a collection of global vectors. We conduct experiments on the MovingMNIST dataset and a newly proposed chaotic N-body MNIST dataset to verify the effectiveness of cuboid attention and figure out the best design of Earthformer. Experiments on two real-world benchmarks about precipitation nowcasting and El Nino/Southern Oscillation (ENSO) forecasting show Earthformer achieves state-of-the-art performance. Code is available: https://github.com/amazon-science/earth-forecasting-transformer .