论文标题
操作员流和相关功能的量子速度限制
Quantum speed limits on operator flows and correlation functions
论文作者
论文摘要
量子速度限制(QSL)通过根据量子状态的变化率或可观察到的期望值提供下限来识别物理过程的基本时间尺度。我们引入了QSL的概括用于单一操作员流,这些流在物理学中无处不在,并且与量子和经典域中的应用相关。我们得出了两种类型的QSL,并评估它们之间的交叉存在,我们用量子和随机基质汉密尔顿(Hamiltonian)说明了这些QSL。我们进一步将结果应用于自相关函数的时间演变,从平衡和量子渔民信息中获得可计算的限制,并在量子参数估计中获得精度。
Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable. We introduce a generalization of QSL for unitary operator flows, which are ubiquitous in physics and relevant for applications in both the quantum and classical domains. We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian, as canonical examples. We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear dynamical response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.