论文标题
量子主方程的热力学一致性
Thermodynamic consistency of quantum master equations
论文作者
论文摘要
从微观系统储存的描述开始,我们得出了时间局部量子主方程(QME)的一般条件,以满足波动级别的热力学的第一和第二定律。使用计数统计数据,我们表明,波动的第二定律可以作为广义量子详细的平衡条件(GQDB)重新塑造,即确保波动定理的有效性的时机发生器的对称性。当需要严格的系统浴能节能时,GQDB将减少到通常的详细平衡概念,从而确保具有Gibbsian稳态的QME。但是,如果平均需要节能,则具有非Gibbsian稳态的QME仍然可以保持一定水平的热力学一致性。将我们的理论应用于常用的QME,我们表明红场方程破坏了GQDB,并且一些最近基于Redfield方程的近似近似方案(该方程都超出了世俗近似值,并允许衍生出lindblad形式的QME)满足GQDB和平均第一法律。我们发现,执行世俗近似是确保在波动水平上的第一和第二定律的唯一方法。
Starting from a microscopic system-baths description, we derive the general conditions for a time-local quantum master equation (QME) to satisfy the first and second law of thermodynamics at the fluctuating level. Using counting statistics, we show that the fluctuating second law can be rephrased as a Generalized Quantum Detailed Balance condition (GQDB), i.e., a symmetry of the time-local generators which ensures the validity of the fluctuation theorem. When requiring in addition a strict system-bath energy conservation, the GQDB reduces to the usual notion of detailed balance which ensures QMEs with Gibbsian steady states. However, if energy conservation is only required on average, QMEs with non Gibbsian steady states can still maintain a certain level of thermodynamic consistency. Applying our theory to commonly used QMEs, we show that the Redfield equation breaks the GQDB, and that some recently derived approximation schemes based on the Redfield equation (which hold beyond the secular approximation and allow to derive a QME of Lindblad form) satisfy the GQDB and the average first law. We find that performing the secular approximation is the only way to ensure the first and second law at the fluctuating level.