论文标题

相干有限的相位估计

Phase estimation with limited coherence

论文作者

Munoz-Lahoz, D., Calsamiglia, J., Bergou, J. A., Bagan, E.

论文摘要

我们研究了探测器的相干性$ c $的量子相估计的最终精度限制。对于纯状态,我们给出可达到的最小估计差异,$ v(c)$,而当探头系统大小为$ n $的尺寸很大时,最佳状态在渐近限制下。我们证明,只有$ c $ scale作为$ n $具有足够大比例的因素,纯状态才是最佳状态,而最佳状态的排名随着$ c $的降低而增加,最终成为全级别。我们表明,该方差表现出像海森堡一样的缩放,$ v(c)\ sim a_n/c^2 $,其中$ a_n $降低至$π^2/3 $,$ n $增加,导致与维度独立的关系。

We investigate the ultimate precision limits for quantum phase estimation in terms of the coherence, $C$, of the probe. For pure states, we give the minimum estimation variance attainable, $V(C)$, and the optimal state, in the asymptotic limit when the probe system size, $n$, is large. We prove that pure states are optimal only if $C$ scales as $n$ with a sufficiently large proportionality factor, and that the rank of the optimal state increases with decreasing $C$, eventually becoming full-rank. We show that the variance exhibits a Heisenberg-like scaling, $V(C) \sim a_n/C^2$, where $a_n$ decreases to $π^2/3$ as $n$ increases, leading to a dimension-independent relation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源