论文标题

一个密度 - 矩阵重归其化组算法,用于模拟有限保真度的量子电路

A density-matrix renormalization group algorithm for simulating quantum circuits with a finite fidelity

论文作者

Ayral, Thomas, Louvet, Thibaud, Zhou, Yiqing, Lambert, Cyprien, Stoudenmire, E. Miles, Waintal, Xavier

论文摘要

我们开发了一个密度 - 矩阵重归其化组(DMRG)算法,用于量子电路的仿真。该算法可以看作是时间依赖性DMRG的扩展,从Hermitian Hamiltonian矩阵的通常情况下到由单一矩阵定义的量子电路。对于小电路深度,该技术精确且等效于基于其他基质产品状态(MPS)技术。对于较大的深度,它变成近似值,以换取在计算时间内的指数速度。像实际的量子计算机一样,DMRG结果的质量的特征是有限的保真度。但是,与量子计算机不同,保真度在很大程度上取决于所考虑的量子电路。对于该技术最困难的电路,所谓的Google Inc.的“量子至上”基准,我们发现DMRG算法可以生成与单个计算核心上的与开创性Google实验相同质量的位字符串。对于用于组合优化的更结构化电路(量子近似优化算法或QAOA),我们发现DMRG结果的大幅改善,与随机量子电路相比,错误率下降了100倍。我们的结果表明,当前的量子计算机的瓶颈是它们的保真度,而不是量子数的数量。

We develop a density-matrix renormalization group (DMRG) algorithm for the simulation of quantum circuits. This algorithm can be seen as the extension of time-dependent DMRG from the usual situation of hermitian Hamiltonian matrices to quantum circuits defined by unitary matrices. For small circuit depths, the technique is exact and equivalent to other matrix product state (MPS) based techniques. For larger depths, it becomes approximate in exchange for an exponential speed up in computational time. Like an actual quantum computer, the quality of the DMRG results is characterized by a finite fidelity. However, unlike a quantum computer, the fidelity depends strongly on the quantum circuit considered. For the most difficult possible circuit for this technique, the so-called "quantum supremacy" benchmark of Google Inc. , we find that the DMRG algorithm can generate bit strings of the same quality as the seminal Google experiment on a single computing core. For a more structured circuit used for combinatorial optimization (Quantum Approximate Optimization Algorithm or QAOA), we find a drastic improvement of the DMRG results with error rates dropping by a factor of 100 compared with random quantum circuits. Our results suggest that the current bottleneck of quantum computers is their fidelities rather than the number of qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源