论文标题

一维MHD用圆柱对称性流动:谎言对称性和保护定律

One-dimensional MHD flows with cylindrical symmetry: Lie symmetries and conservation laws

论文作者

Dorodnitsyn, Vladimir A., Kaptsov, Evgeniy I., Kozlov, Roman V., Meleshko, Sergey V.

论文摘要

最近的一篇论文考虑了质量拉格朗日坐标中磁水动力学的平面一维流的对称性和保护定律。本文分析了质量拉格朗日坐标中的圆柱形对称性的一维磁水动力学流动。假定培养基无粘性和热传导。它是由多粒气体建模的。发现对称和保护法。有限和无限电导率的病例需要分别分析。对于有限的电导率$σ(ρ,p)$,我们执行Lie组分类,该分类标识了$σ(ρ,p)$ case a supper insmetries。通过直接计算可以找到保护定律。对于具有无限电导率变化公式的情况,考虑了方程式。用被视为任意元素的熵获得谎言组的分类。差异公式允许使用Noether定理来计算保护定律。原始(物理)变量也介绍了针对变异方程的保护定律。

A recent paper considered symmetries and conservation laws of the plane one-dimensional flows for magnetohydrodynamics in the mass Lagrangian coordinates. This paper analyses the one-dimensional magnetohydrodynamics flows with cylindrical symmetry in the mass Lagrangian coordinates. The medium is assumed inviscid and thermally non-conducting. It is modeled by a polytropic gas. Symmetries and conservation laws are found. The cases of finite and infinite electric conductivity need to be analyzed separately. For finite electric conductivity $σ(ρ,p)$ we perform Lie group classification, which identifies $σ(ρ,p)$ cases with additional symmetries. The conservation laws are found by direct computation. For cases with infinite electric conductivity variational formulations of the equations are considered. Lie group classifications are obtained with the entropy treated as an arbitrary element. A variational formulation allows to use the Noether theorem for computation of conservation laws. The conservation laws obtained for the variational equations are also presented in the original (physical) variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源