论文标题

通过语音晶体和超材料中的带隙工程进行调整结构传播的声音:全面评论

Tailoring Structure-borne Sound Through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review

论文作者

Oudich, Mourad, Gerard, Nikhil JRK, Deng, Yuanchen, Jing, Yun

论文摘要

在固态物理学中,带隙(BG)是指不存在电子状态的一系列能量。这个概念扩展到经典波,并产生光子和声音晶体的整个场,其中BG是频率(或波长)的间隔,禁止波传播。对于弹性波,在定期交替的机械性能(即刚度和密度)中发现了BG。这会诞生声音晶体和后来的弹性超材料,这些晶体已经实现了广泛应用的前所未有的功能。平面超材料是用于振动屏蔽的,而无数的作品着重于在微型系统中整合语音晶体,用于过滤,波浪和动态应变能量限制。此外,过去十年见证了拓扑绝缘子的兴起,这导致创建了拓扑绝缘子的弹性动力学类似物,以牢固地操纵机械波。同时,添加剂制造能够实现3D架构的弹性变材料,从而扩展了其功能。这篇评论旨在全面描述弹性的超材料和声音晶体的丰富物理背景以及最先进的艺术,这些晶体具有用于不同功能和应用的工程BG,并为这些人造材料的未来方向提供路线图。

In solid state physics, a bandgap (BG) refers to a range of energies where no electronic states can exist. This concept was extended to classical waves, spawning the entire fields of photonic and phononic crystals where BGs are frequency (or wavelength) intervals where wave propagation is prohibited. For elastic waves, BGs are found in periodically alternating mechanical properties (i.e., stiffness and density). This gives birth to phononic crystals and later elastic metamaterials that have enabled unprecedented functionalities for a wide range of applications. Planar metamaterials are built for vibration shielding, while a myriad of works focus on integrating phononic crystals in microsystems for filtering, waveguiding, and dynamical strain energy confinement in optomechanical systems. Furthermore, the past decade has witnessed the rise of topological insulators, which leads to the creation of elastodynamic analogs of topological insulators for robust manipulation of mechanical waves. Meanwhile, additive manufacturing has enabled the realization of 3D architected elastic metamaterials, which extends their functionalities. This review aims to comprehensively delineate the rich physical background and the state-of-the art in elastic metamaterials and phononic crystals that possess engineered BGs for different functionalities and applications, and to provide a roadmap for future directions of these manmade materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源