论文标题
3个单数模量的有效乘法独立性
Effective multiplicative independence of 3 singular moduli
论文作者
论文摘要
Pila和Tsimerman在2017年证明,对于每一个$ k $,最多有很多$ k $ - tuples $(x_1,\ ldots,x_k)$,具有独特的非零奇异模量,属性具有“ $ x_1,\ x_1,\ ldots,x_k $,x_k $是乘法的,但它们是乘数的,但它们是乘数乘以乘坐的。使用Siegel的班级编号使用Siegel的下限,证明是无效的。在2019年,Riffaut获得了此结果的有效版本,以$ k = 2 $。此外,他确定了$ x^my^n \ in \ mathbb q^\ times $的所有实例,其中$ x,y $是独特的单数模量和$ m,n $ non-Zero Integers。在本文中,我们获得了$ k = 3 $的类似结果。我们表明,$ x^my^my^nz^r \ in \ mathbb q^\ times $(其中$ x,y,z $是独特的单数模量和$ m,n,r $ non-Zero Integers)意味着$ x,y,z $的歧视因素不超过$ 10^{10} $。
Pila and Tsimerman proved in 2017 that for every $k$ there exists at most finitely many $k$-tuples $(x_1,\ldots, x_k)$ of distinct non-zero singular moduli with the property "$x_1, \ldots,x_k$ are multiplicatively dependent, but any proper subset of them is multiplicatively independent". The proof was non-effective, using Siegel's lower bound for the Class Number. In 2019 Riffaut obtained an effective version of this result for $k=2$. Moreover, he determined all the instances of $x^my^n\in \mathbb Q^\times$, where $x,y$ are distinct singular moduli and $m,n$ non-zero integers. In this article we obtain a similar result for $k=3$. We show that $x^my^nz^r\in \mathbb Q^\times$ (where $x,y,z$ are distinct singular moduli and $m,n,r$ non-zero integers) implies that the discriminants of $x,y,z$ do not exceed $10^{10}$.