论文标题
在Fire 2021年乌尔都语中有关假新闻检测的共同任务概述
Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2021
论文作者
论文摘要
在当代世界中,自动检测假新闻是一项非常重要的任务。这项研究报告了第二项共享任务,称为Urdufake@fire2021在识别乌尔都语中的假新闻检测方面。共同任务的目的是激励社区提出有效的方法来解决这一至关重要的问题,尤其是对于乌尔都语。该任务被视为二进制分类问题,将给定的新闻文章标记为真实或假新闻文章。组织者提供了一个数据集,其中包括五个领域的新闻:(i)健康,(ii)体育,(iii)Showbiz,(iv)技术和(v)业务,分为培训和测试集。该培训集包含1300篇注释的新闻文章 - 750个真实新闻,550个假新闻,而测试集包含300篇新闻文章 - 200个真实,100个假新闻。来自7个不同国家(中国,埃及,以色列,印度,墨西哥,巴基斯坦和阿联酋)的34个团队注册参加了Urdufake@Fire2021共享任务。在其中,有18个团队提交了实验结果,其中11个提交了技术报告,与2020年的Urdufake共享任务相比,这一报告要高得多,当时只有6个团队提交了技术报告。参与者提交的技术报告展示了不同的数据表示技术,从基于计数的弓形功能到单词矢量嵌入以及使用众多的机器学习算法,从传统的SVM到各种神经网络体系结构,包括伯特和罗伯塔等各种神经网络体系结构。在今年的比赛中,表现最佳的系统获得了0.679的F1-MACRO得分,低于过去一年的0.907 F1-MaCro的最佳结果。诚然,虽然过去和当前几年的培训在很大程度上重叠,但如果今年完全不同,则测试集。
Automatic detection of fake news is a highly important task in the contemporary world. This study reports the 2nd shared task called UrduFake@FIRE2021 on identifying fake news detection in Urdu. The goal of the shared task is to motivate the community to come up with efficient methods for solving this vital problem, particularly for the Urdu language. The task is posed as a binary classification problem to label a given news article as a real or a fake news article. The organizers provide a dataset comprising news in five domains: (i) Health, (ii) Sports, (iii) Showbiz, (iv) Technology, and (v) Business, split into training and testing sets. The training set contains 1300 annotated news articles -- 750 real news, 550 fake news, while the testing set contains 300 news articles -- 200 real, 100 fake news. 34 teams from 7 different countries (China, Egypt, Israel, India, Mexico, Pakistan, and UAE) registered to participate in the UrduFake@FIRE2021 shared task. Out of those, 18 teams submitted their experimental results, and 11 of those submitted their technical reports, which is substantially higher compared to the UrduFake shared task in 2020 when only 6 teams submitted their technical reports. The technical reports submitted by the participants demonstrated different data representation techniques ranging from count-based BoW features to word vector embeddings as well as the use of numerous machine learning algorithms ranging from traditional SVM to various neural network architectures including Transformers such as BERT and RoBERTa. In this year's competition, the best performing system obtained an F1-macro score of 0.679, which is lower than the past year's best result of 0.907 F1-macro. Admittedly, while training sets from the past and the current years overlap to a large extent, the testing set provided this year is completely different.