论文标题
部分可观测时空混沌系统的无模型预测
Structural Inference of Networked Dynamical Systems with Universal Differential Equations
论文作者
论文摘要
网络动力学系统在工程学的整个科学中都是常见的。例如,生物网络,反应网络,电力系统等。对于许多这样的系统,非线性驱动相同(或几乎相同)单位的种群表现出广泛的非平凡行为,例如相干结构的出现(例如波浪和模式)或其他显着的动态(例如,同步和混乱)。在这项工作中,我们试图推断(i)人口基本单位的固有物理学,(ii)单位之间共享的潜在图形结构,以及(iii)给定网络动力学系统的耦合物理学,鉴于对节点状态的观察结果。这些任务是围绕通用微分方程的概念而制定的,在通用微分方程的概念中,未知的动力学系统可以用神经网络近似,数学术语已知先验(尽管有未知参数)或两者的组合。我们不仅通过研究未来的状态预测,而且还研究了系统行为对各种网络拓扑的推断来证明这些推理任务的价值。这些方法的有效性和实用性及其在规范网络非线性耦合振荡器中的应用显示。
Networked dynamical systems are common throughout science in engineering; e.g., biological networks, reaction networks, power systems, and the like. For many such systems, nonlinearity drives populations of identical (or near-identical) units to exhibit a wide range of nontrivial behaviors, such as the emergence of coherent structures (e.g., waves and patterns) or otherwise notable dynamics (e.g., synchrony and chaos). In this work, we seek to infer (i) the intrinsic physics of a base unit of a population, (ii) the underlying graphical structure shared between units, and (iii) the coupling physics of a given networked dynamical system given observations of nodal states. These tasks are formulated around the notion of the Universal Differential Equation, whereby unknown dynamical systems can be approximated with neural networks, mathematical terms known a priori (albeit with unknown parameterizations), or combinations of the two. We demonstrate the value of these inference tasks by investigating not only future state predictions but also the inference of system behavior on varied network topologies. The effectiveness and utility of these methods is shown with their application to canonical networked nonlinear coupled oscillators.