论文标题
部分可观测时空混沌系统的无模型预测
Multi-agent systems with CBF-based controllers -- collision avoidance and liveness from instability
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Assuring system stability is typically a major control design objective. In this paper, we present a system where instability provides a crucial benefit. We consider multi-agent collision avoidance using Control Barrier Functions (CBF) and study trade-offs between safety and liveness -- the ability to reach a destination without large detours or gridlock. We compare two standard decentralized policies, with only the local (host) control available, to co-optimization policies (PCCA and CCS) where everyone's (virtual) control action is available. The co-optimization policies compute control for everyone even though they lack information about others' intentions. For comparison, we use a Centralized, full information policy as the benchmark. One contribution of this paper is proving feasibility for the Centralized, PCCA, and CCS policies. Monte Carlo simulations show that decentralized, host-only control policies and CCS lack liveness while the PCCA policy performs as well as the Centralized. Next, we explain the observed results by considering two agents negotiating the passing order through an intersection. We show that the structure and stability of the resulting equilibria correlates with the observed propensity to gridlock -- the policies with unstable equilibria avoid gridlocks while those with stable ones do not.