论文标题
部分可观测时空混沌系统的无模型预测
State estimation with the Interacting Multiple Model (IMM) method
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
For model-based estimation methods, the modeling that is as close to reality as possible makes a vital estimation result. In simple applications, it is sufficient to model a system with a single state space model. However, there are applications in which a system changes its behavior deterministically or stochastically. A previously defined model then describes the behavior of the system only inaccurately or is even no longer valid. The state of the art is to use more than one system models in parallel and to derive a suitable system estimate from them. In the literature, this is generally referred to as the Multiple Model (MM) method. Depending on the application and requirements, different methods exist for this purpose, which determine a single state estimate from a set of models. A frequently used representative of these methods is the Interacting Multiple Model (IMM) method which will be presented in this paper.