论文标题
通过本地校准个性化联合医学图像细分
Personalizing Federated Medical Image Segmentation via Local Calibration
论文作者
论文摘要
通过允许多个临床站点在不集中数据集的情况下协作学习全球模型,在联邦学习(FL)下进行的医疗图像分割是一个有希望的方向。但是,使用单个模型适应来自不同站点的各种数据分布非常具有挑战性。个性化的FL仅利用来自Global Server共享的部分模型参数来解决此问题,同时保留其余的以适应每个站点本地培训中的数据分布。但是,大多数现有的方法都集中在部分参数分裂上,而在本地培训期间,不考虑\ textit {site Inter inter-Insinesiscisies},实际上,这可以促进网站上的知识交流,从而使模型学习有益于改善本地准确性。在本文中,我们提出了一个个性化的联合框架,该框架使用\ textbf {l} ocal \ textbf {c}闭合(lc-fed),以利用\ textIt {fefter-textit {fefture-和prediction-Levels}中的地点间矛盾来促进分段。具体而言,由于每个本地站点都对各种功能都有其他关注,因此我们首先设计嵌入的对比度位点,并与通道选择操作相结合以校准编码的功能。此外,我们建议利用预测级别的一致性知识,以指导模棱两可地区的个性化建模,例如解剖界限。它是通过计算分歧感知图来校准预测来实现的。我们的方法的有效性已在三个具有不同方式的医学图像分割任务上进行了验证,我们的方法始终显示出与最先进的个性化FL方法相比的性能。代码可从https://github.com/jcwang123/fedlc获得。
Medical image segmentation under federated learning (FL) is a promising direction by allowing multiple clinical sites to collaboratively learn a global model without centralizing datasets. However, using a single model to adapt to various data distributions from different sites is extremely challenging. Personalized FL tackles this issue by only utilizing partial model parameters shared from global server, while keeping the rest to adapt to its own data distribution in the local training of each site. However, most existing methods concentrate on the partial parameter splitting, while do not consider the \textit{inter-site in-consistencies} during the local training, which in fact can facilitate the knowledge communication over sites to benefit the model learning for improving the local accuracy. In this paper, we propose a personalized federated framework with \textbf{L}ocal \textbf{C}alibration (LC-Fed), to leverage the inter-site in-consistencies in both \textit{feature- and prediction- levels} to boost the segmentation. Concretely, as each local site has its alternative attention on the various features, we first design the contrastive site embedding coupled with channel selection operation to calibrate the encoded features. Moreover, we propose to exploit the knowledge of prediction-level in-consistency to guide the personalized modeling on the ambiguous regions, e.g., anatomical boundaries. It is achieved by computing a disagreement-aware map to calibrate the prediction. Effectiveness of our method has been verified on three medical image segmentation tasks with different modalities, where our method consistently shows superior performance to the state-of-the-art personalized FL methods. Code is available at https://github.com/jcwang123/FedLC.