论文标题
部分可观测时空混沌系统的无模型预测
Characterization of Two-photon Photopolymerization Fabrication using High-speed Optical Diffraction Tomography
论文作者
论文摘要
两光子光聚合(TPP)最近已成为制造三维(3D)微型和纳米结构的流行方法。设计的微型和纳米结构的繁殖保真度受实验写作条件的影响,包括激光功率,暴露时间等。确定适当的写作参数,形态特征的表征和实验过程中的表面粗糙度。 TPP的传统表征方法,例如,扫描电子显微镜和原子力显微镜的速度有限,并且没有侵入性方法就无法研究内部结构。光学衍射断层扫描(ODT)是一种基于重建对象的3D折射率(RI)分布的新兴标签3D成像技术,并具有衍射限制的分辨率。在这里,我们提出了一种非侵入性解决方案,以使用高速ODT技术充分表征TPP制造的结构,该技术可以消除对复杂样品制备的需求,例如荧光标记或金属涂层,并实现完整的3D测量时间为6 ms。通过可视化和研究不同的TPP制造结构,包括嵌入式螺旋和立方体,通过ODT系统,可以定量检查制造质量,包括3D形态特征,暴露水平和表面粗糙度。结果表明,我们的方法可以有效地提高TPP的制造质量和可重复性,从而对纳米制作社区产生影响。
Two-photon photopolymerization (TPP) has recently become a popular method for the fabrication of three-dimensional (3D) micro- and nanostructures. The reproduction fidelity of the designed micro- and nanostructures is influenced by experimental writing conditions, including laser power, exposure time, etc. To determine the appropriate writing parameters, characterization of morphological features and surface roughness during the experiment is needed. Traditional characterization methods for TPP, e.g., scanning electron microscopy and atomic force microscopy, have limited speed and cannot study internal structures without invasive approaches. Optical diffraction tomography (ODT) is an emerging label-free 3D imaging technique based on reconstructing the object's 3D refractive index (RI) distribution with diffraction-limited resolution. Here, we propose a non-invasive solution to fully characterize the TPP-fabricated structures using a high-speed ODT technique, which can eliminate the need for complex sample preparation, such as fluorescence labelling or metal-coating, and achieve a full 3D measurement time of 6 ms. By visualizing and studying different TPP-fabricated structures, including embedded spirals and cubes, via the ODT system, the fabrication quality, including 3D morphological features, exposure levels, and surface roughness, can be examined quantitatively. The results suggest our method can effectively improve the fabrication quality and reproducibility of TPP, generating impacts on the nanofabrication community.