论文标题
部分可观测时空混沌系统的无模型预测
Monopoles of the Dirac type and color confinement in QCD -- First results of SU(3) numerical simulations without gauge fixing
论文作者
论文摘要
如果$ su(3)$ QCD中的非亚伯仪表字段具有线条,导致对连续的部分衍生作业的非交往性,则违反了非亚伯利亚的Bianchi身份。作为操作员的违法行为被证明等同于违反阿贝里安式的比安奇身份。然后在$ su(3)$ qCD中出现八种狄拉克类型的八个阿贝式保守的磁单电流。确切的Abelian(但运动学)的对称性出现在非阿贝尔$ SU(3)$ QCD中。在这里,我们试图显示由于上述类似Abelian的单孔而导致的Abelian Dual Meissner效应是$ SU(3)$ QCD中的颜色限制。如果这张图是正确的,则非阿布尔威尔逊循环的弦乐张力将由阿贝里安·威尔逊(Abelian Wilson)循环完全复制。这被称为完美的亚伯利亚统治地位。在本报告中,在多级方法的帮助下,显示出完美的亚伯利亚优势,但没有引入其他平滑技术(例如部分量规固定),尽管所研究的晶格尺寸不足以研究无限的体积限制。还显示了完美的单极优势,没有任何其他量规固定。由于电磁单螺旋电流挤压ABELIAN电场,并且单个颜色的Abelian电场的渗透长度与非亚洲电场相同。连贯长度还通过单极密度和Polyakov环对的相关性直接测量。 Ginzburg-Landau参数表明真空类型是弱I(双)超导体。上面获得的结果没有任何其他假设,更明确的先前$ su(2)$结果似乎强烈暗示了上述颜色限制机制的上述Abelian Dual Meissner图片。
If non-Abelian gauge fields in $SU(3)$ QCD have a line-singularity leading to non-commutativity with respect to successive partial-derivative operations, the non-Abelian Bianchi identity is violated. The violation as an operator is shown to be equivalent to violation of Abelian-like Bianchi identities. Then there appear eight Abelian-like conserved magnetic monopole currents of the Dirac type in $SU(3)$ QCD. Exact Abelian (but kinematical) symmetries appear in non-Abelian $SU(3)$ QCD. Here we try to show the Abelian dual Meissner effect due to the above Abelian-like monopoles are responsible for color confinement in $SU(3)$ QCD. If this picture is correct, the string tension of non-Abelian Wilson loops is reproduced fully by that of the Abelian Wilson loops. This is called as perfect Abelian dominance. In this report, the perfect Abelian dominance is shown to exist with the help of the multilevel method but without introducing additional smoothing techniques like partial gauge fixings, although lattice sizes studied are not large enough to study the infinite volume limit. Perfect monopole dominance is also shown without any additional gauge fixing. Abelian electric fields are squeezed due to solenoidal monopole currents and the penetration length for an Abelian electric field of a single color is the same as that of non-Abelian electric field. The coherence length is also measured directly through the correlation of the monopole density and the Polyakov loop pair. The Ginzburg-Landau parameter indicates that the vacuum type is the weak type I (dual) superconductor. The results obtained above without any additional assumptions as well as more clear previous $SU(2)$ results seem to suggest strongly the above Abelian dual Meissner picture of color confinement mechanism.