论文标题
宇宙学摄动理论使用广义的爱因斯坦·德斯特·宇宙学
Cosmological perturbation theory using generalized Einstein de Sitter cosmologies
论文作者
论文摘要
Einstein De Sitter(EDS)宇宙的标准扰动理论中的可分离分析解决方案可以推广到更广泛的宇宙学类别(``广义EDS''或GEDS),其中无压力流体的一小部分不会聚集。我们在Eulerian扰动理论(EPT)和Lagrangian扰动理论中得出相应的内核,将规范的ED表达式推广到一个参数家族中,可以将参数视为生长模式分化模式扩增的指数$α$。对于EPT中一个循环的功率谱(PS),对于“ 13”和“ 22'术语中的每一个,都给出了标准ED的其他贡献,这是两个Infra-Red Safe积分的函数。在本文的第二部分中,我们表明,可以简化标准摄动理论中宇宙学依赖性校正的计算(例如LCDM样)模型,并且通过将它们与GEDS模型的分析结果联系起来,可以更好地理解它们的大小和参数依赖性。在二阶情况下,依赖性内核等于GEDS模型的分析核,$α$被单个红移依赖的有效增长率$α_2(z)$代替。在三阶时,可以以两个额外的有效增长速率方便地进行演变。对于以一个循环顺序计算的PS,相对于EDS限制的PS校正只能以$α_2(Z)$,一个额外的有效增长率函数和GEDS限制的四个Infra-Red Safe积分来表示。与使用六个或八个红移依赖性功能且不明确的红外安全性的文献相比,这是简化的。使用$α=α_2(z)$的PS的分析GEDS表达式提供了良好的近似值(至$ \ sim 25 \%$),以确切的结果。
The separable analytical solution in standard perturbation theory for an Einstein de Sitter (EdS) universe can be generalized to the wider class of such cosmologies (``generalized EdS'', or gEdS) in which a fraction of the pressure-less fluid does not cluster. We derive the corresponding kernels in both Eulerian perturbation theory (EPT) and Lagrangian perturbation theory, generalizing the canonical EdS expressions to a one-parameter family where the parameter can be taken to be the exponent $α$ of the growing mode linear amplification $D(a) \propto a^α$. For the power spectrum (PS) at one loop in EPT, the contribution additional to standard EdS is given, for each of the `13' and `22' terms, as a function of two infra-red safe integrals. In the second part of the paper we show that the calculation of cosmology-dependent corrections in perturbation theory in standard (e.g. LCDM-like) models can be simplified, and their magnitude and parameter dependence better understood, by relating them to our analytic results for gEdS models. At second order the time dependent kernels are equivalent to the analytic kernels of the gEdS model with $α$ replaced by a single redshift dependent effective growth rate $α_2(z)$. At third order the time evolution can be conveniently parametrized in terms of two additional such effective growth rates. For the PS calculated at one loop order, the correction to the PS relative to the EdS limit can be expressed in terms of just $α_2(z)$, one additional effective growth rate function and the four infra-red safe integrals of the gEdS limit. This is much simplified compared to expressions in the literature that use six or eight red-shift dependent functions and are not explicitly infra-red safe. Using the analytic gEdS expression for the PS with $α=α_2(z)$ gives a good approximation (to $\sim 25 \%$) for the exact result.