论文标题
SHDM-NET:热图详细信息指南,带有图像垫子的工业焊接语义分割网络
SHDM-NET: Heat Map Detail Guidance with Image Matting for Industrial Weld Semantic Segmentation Network
论文作者
论文摘要
在实际的工业生产中,评估钢板焊接效果是一项重要任务,焊接部分的分割是评估的基础。本文提出了一个工业焊接分割网络,基于深度学习语义分割算法与热图详细信息指导和图像垫子融合,以解决焊接区域的自动分割问题。在现有的语义分割网络中,可以通过融合高级和低级图层的特征来保留边界信息。但是,此方法可能导致低级层中空间信息的表达不足,从而导致分割边界定位不准确。我们提出了一个基于热图的详细指导模块,以完全表达低级网络中的分段区域边界信息以解决此问题。具体而言,可以通过添加详细的分支来预测分段边界,然后将其与蒙版标签生成的边界热图匹配以计算均方误差损失,从而增强边界信息的表达。此外,尽管深度学习在语义分割领域取得了巨大的成功,但由于经典分割网络在编码和解码过程中,分割边界区域的精度并不高。本文介绍了一种矩阵算法,以校准语义分割网络的分割区域的边界以解决此问题。通过许多关于工业焊接数据集的实验,我们证明了我们方法的有效性,MIOU达到97.93%。值得注意的是,这种性能与人的手动细分相媲美(MIOU 97.96%)。
In actual industrial production, the assessment of the steel plate welding effect is an important task, and the segmentation of the weld section is the basis of the assessment. This paper proposes an industrial weld segmentation network based on a deep learning semantic segmentation algorithm fused with heatmap detail guidance and Image Matting to solve the automatic segmentation problem of weld regions. In the existing semantic segmentation networks, the boundary information can be preserved by fusing the features of both high-level and low-level layers. However, this method can lead to insufficient expression of the spatial information in the low-level layer, resulting in inaccurate segmentation boundary positioning. We propose a detailed guidance module based on heatmaps to fully express the segmented region boundary information in the low-level network to address this problem. Specifically, the expression of boundary information can be enhanced by adding a detailed branch to predict segmented boundary and then matching it with the boundary heat map generated by mask labels to calculate the mean square error loss. In addition, although deep learning has achieved great success in the field of semantic segmentation, the precision of the segmentation boundary region is not high due to the loss of detailed information caused by the classical segmentation network in the process of encoding and decoding process. This paper introduces a matting algorithm to calibrate the boundary of the segmentation region of the semantic segmentation network to solve this problem. Through many experiments on industrial weld data sets, the effectiveness of our method is demonstrated, and the MIOU reaches 97.93%. It is worth noting that this performance is comparable to human manual segmentation ( MIOU 97.96%).