论文标题
冰河时代:CHA-MMS1的化学动力模型,以预测新的固相物种用于JWST
Ice Age : Chemo-dynamical modeling of Cha-MMS1 to predict new solid-phase species for detection with JWST
论文作者
论文摘要
化学模型和实验表明,星际粉尘晶粒及其冰壳在复杂有机分子(COM)的生产中起着重要作用。迄今为止,在ISM中确定检测到的最复杂的固相分子是甲醇,但是James Webb太空望远镜(JWST)可能能够鉴定出更大的有机物种。在这项研究中,我们使用耦合的化学动力模型来预测新的候选物种,用于JWST检测到年轻的恒星形成的核心CHA-MMS1,将气体粒化学动力学Magickal与使用Athena ++的1-D辐射流体动力学模拟相结合。通过此模型,主要冰成分相对于核心中心的相对丰度与典型的观察值非常匹配,从而提供了稳定的基础来探索冰化学。六个含氧com(乙醇,二甲醇,乙醛,甲基甲酸,甲氧基甲醇和乙酸)以及甲酸,在水冰方面显示出丰富的高达或超过0.01%的丰富性。根据建模的冰组成,合成红外光谱以诊断新冰种的可检测性。与主要的冰成分相比,COM对IR吸收带的贡献很小,而将COM ICE鉴定为CHA-MMS1的核心中心与JWST NIRCAM/宽场无slitss slitless slitss slitss slitss slitss slitss slitss slitssloscopicy(2.4-5.0微光谱)。然而,对水冰柱密度超过1%的固相com丰度超过1%的COM富含环境的Miri观测(5-28微米)可能会揭示COM的独特冰。
Chemical models and experiments indicate that interstellar dust grains and their ice mantles play an important role in the production of complex organic molecules (COMs). To date, the most complex solid-phase molecule detected with certainty in the ISM is methanol, but the James Webb Space Telescope (JWST) may be able to identify still larger organic species. In this study, we use a coupled chemo-dynamical model to predict new candidate species for JWST detection toward the young star-forming core Cha-MMS1, combining the gas-grain chemical kinetic code MAGICKAL with a 1-D radiative hydrodynamics simulation using Athena++. With this model, the relative abundances of the main ice constituents with respect to water toward the core center match well with typical observational values, providing a firm basis to explore the ice chemistry. Six oxygen-bearing COMs (ethanol, dimethyl ether, acetaldehyde, methyl formate, methoxy methanol, and acetic acid), as well as formic acid, show abundances as high as, or exceeding, 0.01% with respect to water ice. Based on the modeled ice composition, the infrared spectrum is synthesized to diagnose the detectability of the new ice species. The contribution of COMs to IR absorption bands is minor compared to the main ice constituents, and the identification of COM ice toward the core center of Cha-MMS1 with the JWST NIRCAM/Wide Field Slitless Spectroscopy (2.4-5.0 micron) may be unlikely. However, MIRI observations (5-28 micron) toward COM-rich environments where solid-phase COM abundances exceed 1% with respect to the water ice column density might reveal the distinctive ice features of COMs.