论文标题
高光谱图像denoising的降压量的低维卷积设置
Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image Denoising
论文作者
论文摘要
本文解决了高光谱(HS)图像denoising的具有挑战性的问题。与现有的基于深度学习的方法不同,通常采用复杂的网络架构或经验堆叠现成的模块以提高性能,我们专注于捕获HS图像的高维特性的高效特征提取方式。具体来说,基于理论分析,即由展开的卷积内核形成的矩阵的排名可以促进特征多样性,我们提出了阵列增强的低维卷积集(重新计算),该集合(重新汇率)分别执行沿着HS图像侧面的三个维度沿HS图像的三个维度进行汇总,然后通过构图进行了调查。重新互动不仅了解HS图像的不同空间光谱特征,而且还降低了网络的参数和复杂性。然后,我们将重新汇合纳入广泛使用的U-NET体系结构中,以构建HS图像DeNoising方法。令人惊讶的是,在定量指标,视觉结果和效率方面,我们观察到这样的简洁框架在很大程度上优于最新方法。我们相信我们的工作可能会阐明基于深度学习的HS图像处理和分析。
This paper tackles the challenging problem of hyperspectral (HS) image denoising. Unlike existing deep learning-based methods usually adopting complicated network architectures or empirically stacking off-the-shelf modules to pursue performance improvement, we focus on the efficient and effective feature extraction manner for capturing the high-dimensional characteristics of HS images. To be specific, based on the theoretical analysis that increasing the rank of the matrix formed by the unfolded convolutional kernels can promote feature diversity, we propose rank-enhanced low-dimensional convolution set (Re-ConvSet), which separately performs 1-D convolution along the three dimensions of an HS image side-by-side, and then aggregates the resulting spatial-spectral embeddings via a learnable compression layer. Re-ConvSet not only learns the diverse spatial-spectral features of HS images, but also reduces the parameters and complexity of the network. We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method. Surprisingly, we observe such a concise framework outperforms the most recent method to a large extent in terms of quantitative metrics, visual results, and efficiency. We believe our work may shed light on deep learning-based HS image processing and analysis.