论文标题

DarkNews:一种基于Python的事件发生器,用于中微子核中中微子散射中的大量中性Lepton生产

DarkNews: a Python-based event generator for heavy neutral lepton production in neutrino-nucleus scattering

论文作者

Abdullahi, Asli M., Zink, Jaime Hoefken, Hostert, Matheus, Massaro, Daniele, Pascoli, Silvia

论文摘要

我们介绍了DarkNews,这是一种基于Python的轻质蒙特卡洛发电机,用于超出标准的模型中微子核散射。发电机通过其他载体或标量介质以及通过过渡磁矩来处理重中性瘦素的生产和衰减。 DarkNews样品在加速器中微子实验中,预计的中微子核核上微子上微子上微子上微子上微子截面和沉重的中微子衰变速率在加速器中微子实验中产生DiLepton和单光子事件。我们为模型提供了两个案例研究,这些案例研究可以解释迷你酮过量。该代码的目的是帮助中微子理论和实验界对中微子上微子进行的新粒子进行搜索和敏感性研究。

We introduce DarkNews, a lightweight Python-based Monte-Carlo generator for beyond-the-Standard-Model neutrino-nucleus scattering. The generator handles the production and decay of heavy neutral leptons via additional vector or scalar mediators, as well as through transition magnetic moments. DarkNews samples pre-computed neutrino-nucleus upscattering cross sections and heavy neutrino decay rates to produce dilepton and single-photon events in accelerator neutrino experiments. We present two case studies with differential distributions for models that can explain the MiniBooNE excess. The aim of this code is to aid the neutrino theory and experimental communities in performing searches and sensitivity studies for new particles produced in neutrino upscattering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源