论文标题
高温连通性的顶点弹脚
Vertex Sparsifiers for Hyperedge Connectivity
论文作者
论文摘要
最近,Chalermsook等。 [Soda'21(Arxiv:2007.07862)]引入了$ C $ - 边缘连接的顶点弹药器的概念,该示例已在网络设计的参数化算法中找到了应用,还导致了令人兴奋的动态算法,以$ C $ c $ - ged-gedge-gedge-ged-ged-ged-ged-ged-ged-gend-ged-ged-sent-ed-ged-st-ed-ed-ed-ed-ed-ed-gent-st-ed-ged-st connectivity [jin and jin and Sun focs'21(ar focs'21'21(Arxiv:2004. 2004. 2004. 2004年)。我们研究了一个天然扩展名,称为$ C $ -HYPEREDGE连接性,并构建一个尺寸与正常图的最新图像相匹配的散布器。更具体地说,我们表明,给定$ n $顶点的超graph $ g =(v,e)$,带有$ n $顶点和$ k $ terminal顶点和一个参数$ c $的$ m $ hyperedges,存在一个只有$ o(kc^{3})$的hypergraph $ h $,可保留所有最小值$ $ c $ cup $ c $ c $ c $ c $ c $ c $ c $ c $ cup yseps ailly cup $ c $ c $ c。这与[liu'20(arxiv:2011.15101)的普通图的$ o(kc^{3})$边的最佳结合匹配。此外,$ h $可以几乎是线性$ o(p^{1 + o(1)} + n(rc \ log n)^{o(rc)} \ log m)$时间$ r = \ max_ {e \ in E} | e} $ \ text {poly}(m,n)$时间,如果我们将大小稍微放松到$ o(kc^{3} \ log^{1.5}(kc)(kc))$ hyperedges。
Recently, Chalermsook et al. [SODA'21(arXiv:2007.07862)] introduces a notion of vertex sparsifiers for $c$-edge connectivity, which has found applications in parameterized algorithms for network design and also led to exciting dynamic algorithms for $c$-edge st-connectivity [Jin and Sun FOCS'21(arXiv:2004.07650)]. We study a natural extension called vertex sparsifiers for $c$-hyperedge connectivity and construct a sparsifier whose size matches the state-of-the-art for normal graphs. More specifically, we show that, given a hypergraph $G=(V,E)$ with $n$ vertices and $m$ hyperedges with $k$ terminal vertices and a parameter $c$, there exists a hypergraph $H$ containing only $O(kc^{3})$ hyperedges that preserves all minimum cuts (up to value $c$) between all subset of terminals. This matches the best bound of $O(kc^{3})$ edges for normal graphs by [Liu'20(arXiv:2011.15101)]. Moreover, $H$ can be constructed in almost-linear $O(p^{1+o(1)} + n(rc\log n)^{O(rc)}\log m)$ time where $r=\max_{e\in E}|e|$ is the rank of $G$ and $p=\sum_{e\in E}|e|$ is the total size of $G$, or in $\text{poly}(m, n)$ time if we slightly relax the size to $O(kc^{3}\log^{1.5}(kc))$ hyperedges.