论文标题
通过卷积傅里叶神经操作员和岩石引导的自训练的大规模面具优化
Large Scale Mask Optimization Via Convolutional Fourier Neural Operator and Litho-Guided Self Training
论文作者
论文摘要
已经对机器学习技术进行了广泛的研究,以实现掩盖优化问题,以更好的掩盖可打印性,更短的周转时间,更好的掩码制造性等等。但是,这些研究中的大多数都集中在小型设计区域的初始解决方案生成上。为了进一步实现机器学习技术在面罩优化任务上的潜力,我们提出了一个卷积傅立叶神经操作员(CFNO),该神经操作员(CFNO)可以有效地学习布局瓷砖依赖性,从而有望使用有限的遗产工具干预,从而有望实现无针迹的大规模掩膜优化。我们在解决非凸优化问题时通过训练有素的机器学习模型发现了岩石引导的自我训练(LGST)的可能性,这允许迭代模型和数据集更新并带来重大的模型性能改进。实验结果表明,我们基于机器学习的框架首次优于最先进的学术数值掩码优化器,并具有数量级的速度。
Machine learning techniques have been extensively studied for mask optimization problems, aiming at better mask printability, shorter turnaround time, better mask manufacturability, and so on. However, most of these researches are focusing on the initial solution generation of small design regions. To further realize the potential of machine learning techniques on mask optimization tasks, we present a Convolutional Fourier Neural Operator (CFNO) that can efficiently learn layout tile dependencies and hence promise stitch-less large-scale mask optimization with the limited intervention of legacy tools. We discover the possibility of litho-guided self-training (LGST) through a trained machine learning model when solving non-convex optimization problems, which allows iterative model and dataset update and brings significant model performance improvement. Experimental results show that, for the first time, our machine learning-based framework outperforms state-of-the-art academic numerical mask optimizers with an order of magnitude speedup.