论文标题

接触谎言系统

Contact Lie systems

论文作者

de Lucas, Javier, Rivas, Xavier

论文摘要

我们定义和分析了触点谎言系统的属性,即一阶微分方程的系统,描述了$ t $依赖性的向量场的积分曲线,在汉密尔顿矢量场的有限维谎言代数中,相对于接触结构的有限维二元谎言代数。作为一个特别的例子,我们研究了保守的接触谎言系统的家庭。 liouville定理,接触降低和格罗莫夫非平方定理被开发并应用于接触式系统。我们的结果通过相关的物理和数学应用,例如Schwarz方程,Brockett Systems等。

We define and analyse the properties of contact Lie systems, namely systems of first-order differential equations describing the integral curves of a $t$-dependent vector field taking values in a finite-dimensional Lie algebra of Hamiltonian vector fields relative to a contact structure. As a particular example, we study families of conservative contact Lie systems. Liouville theorems, contact reductions, and Gromov non-squeezing theorems are developed and applied to contact Lie systems. Our results are illustrated by examples with relevant physical and mathematical applications, e.g. Schwarz equations, Brockett systems, etcetera.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源