论文标题
三节点解码和前向继电器网络上的速率最佳流媒体代码
Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network
论文作者
论文摘要
在本文中,我们研究了三节点解码(D&F)继电器网络受到随机和爆发数据包擦除的影响。来源希望通过继电器将无限的数据包传输到目的地。三节点D&F继电器网络受T数据包的解码延迟的约束,即,源在时间时传输的数据包必须由时间i+t被目的地解码。对于从源到继电器到目的地的各个通道,我们假设基于延迟约束的滑动窗口(DCSW)基于数据包搜虫模型,可以将其视为与普遍接受的Gilbert-Gilbert-Gilbert-elliot通道模型的可拖动近似值。在模型下,宽度W的任何时间窗口都包含随机擦除,或者最多擦除长度为b(> = a)。因此,将源 - 列层和继电器发生点频道建模为(a_1,b_1,w_1,t_1)和(a_2,b_2,w_2,t_2)dcsw频道。我们首先在三节点D&F中继网络的容量上得出上限。然后,我们证明上限对参数示体的紧密:max {b_1,b_2} |(t-b_1-b_2-max {a_1,a_2} +1),a1 = a2 = a2或b1 = b2,通过构造流式传输代码来实现界限。代码构建需要t中的字段大小,并且具有与解码MDS代码相当的复杂性。
In this paper, we study the three-node Decode-and-Forward (D&F) relay network subject to random and burst packet erasures. The source wishes to transmit an infinite stream of packets to the destination via the relay. The three-node D&F relay network is constrained by a decoding delay of T packets, i.e., the packet transmitted by the source at time i must be decoded by the destination by time i+T. For the individual channels from source to relay and relay to destination, we assume a delay-constrained sliding-window (DCSW) based packet-erasure model that can be viewed as a tractable approximation to the commonly-accepted Gilbert-Elliot channel model. Under the model, any time-window of width w contains either up to a random erasure or else erasure burst of length at most b (>= a). Thus the source-relay and relay-destination channels are modeled as (a_1, b_1, w_1, T_1) and (a_2, b_2, w_2, T_2) DCSW channels. We first derive an upper bound on the capacity of the three-node D&F relay network. We then show that the upper bound is tight for the parameter regime: max{b_1, b_2}|(T-b_1-b_2-max{a_1, a_2}+1), a1=a2 OR b1=b2 by constructing streaming codes achieving the bound. The code construction requires field size linear in T, and has decoding complexity equivalent to that of decoding an MDS code.