论文标题

三节点解码和前向继电器网络上的速率最佳流媒体代码

Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network

论文作者

Singhvi, Shubhransh, R., Gayathri, Kumar, P. Vijay

论文摘要

在本文中,我们研究了三节点解码(D&F)继电器网络受到随机和爆发数据包擦除的影响。来源希望通过继电器将无限的数据包传输到目的地。三节点D&F继电器网络受T数据包的解码延迟的约束,即,源在时间时传输的数据包必须由时间i+t被目的地解码。对于从源到继电器到目的地的各个通道,我们假设基于延迟约束的滑动窗口(DCSW)基于数据包搜虫模型,可以将其视为与普遍接受的Gilbert-Gilbert-Gilbert-elliot通道模型的可拖动近似值。在模型下,宽度W的任何时间窗口都包含随机擦除,或者最多擦除长度为b(> = a)。因此,将源 - 列层和继电器发生点频道建模为(a_1,b_1,w_1,t_1)和(a_2,b_2,w_2,t_2)dcsw频道。我们首先在三节点D&F中继网络的容量上得出上限。然后,我们证明上限对参数示体的紧密:max {b_1,b_2} |(t-b_1-b_2-max {a_1,a_2} +1),a1 = a2 = a2或b1 = b2,通过构造流式传输代码来实现界限。代码构建需要t中的字段大小,并且具有与解码MDS代码相当的复杂性。

In this paper, we study the three-node Decode-and-Forward (D&F) relay network subject to random and burst packet erasures. The source wishes to transmit an infinite stream of packets to the destination via the relay. The three-node D&F relay network is constrained by a decoding delay of T packets, i.e., the packet transmitted by the source at time i must be decoded by the destination by time i+T. For the individual channels from source to relay and relay to destination, we assume a delay-constrained sliding-window (DCSW) based packet-erasure model that can be viewed as a tractable approximation to the commonly-accepted Gilbert-Elliot channel model. Under the model, any time-window of width w contains either up to a random erasure or else erasure burst of length at most b (>= a). Thus the source-relay and relay-destination channels are modeled as (a_1, b_1, w_1, T_1) and (a_2, b_2, w_2, T_2) DCSW channels. We first derive an upper bound on the capacity of the three-node D&F relay network. We then show that the upper bound is tight for the parameter regime: max{b_1, b_2}|(T-b_1-b_2-max{a_1, a_2}+1), a1=a2 OR b1=b2 by constructing streaming codes achieving the bound. The code construction requires field size linear in T, and has decoding complexity equivalent to that of decoding an MDS code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源