论文标题

SAR Ship实例细分的掩盖注意力互动和规模增强网络

A Mask Attention Interaction and Scale Enhancement Network for SAR Ship Instance Segmentation

论文作者

Zhang, Tianwen, Zhang, Xiaoling

论文摘要

现有的大多数合成孔径雷达(SAR)船舶内部分割模型无法实现掩模间间隔或提供有限的相互作用性能。此外,他们的多尺度船舶实例细分性能是中等的,特别是对于小型船只。为了解决这些问题,我们为SAR Ship实例细分提出了掩盖注意力相互作用和规模增强网络(MAI-SE-NET)。 MAI使用非常空间的Pyra-Mid合并(ASPP)来获得多分辨率的功能重新发起,非本地块(NLB)来模拟远距离SPA-TIAL依赖性,并进行串联冲水注意力块(CSAB)以提高相互作用益处。 SE使用内容感知的功能块(CARAFEB)重新组装来产生额外的金字塔底部底层,以提高小型船舶性能,功能平衡操作(FBO)以改善规模功能描述以及全球上下文块(GCB)以完善功能。两个公共SSDD和HRSID数据集的实验结果表明,MAI-SE-NET的表现优于其他九个竞争模型,比SSDD上的4.7%检测AP和3.4%的细分AP和3.0%的检测AP和2.4%的HRSID分割AP,优于次优模型的其他九个竞争模型。

Most of existing synthetic aperture radar (SAR) ship in-stance segmentation models do not achieve mask interac-tion or offer limited interaction performance. Besides, their multi-scale ship instance segmentation performance is moderate especially for small ships. To solve these problems, we propose a mask attention interaction and scale enhancement network (MAI-SE-Net) for SAR ship instance segmentation. MAI uses an atrous spatial pyra-mid pooling (ASPP) to gain multi-resolution feature re-sponses, a non-local block (NLB) to model long-range spa-tial dependencies, and a concatenation shuffle attention block (CSAB) to improve interaction benefits. SE uses a content-aware reassembly of features block (CARAFEB) to generate an extra pyramid bottom-level to boost small ship performance, a feature balance operation (FBO) to improve scale feature description, and a global context block (GCB) to refine features. Experimental results on two public SSDD and HRSID datasets reveal that MAI-SE-Net outperforms the other nine competitive models, better than the suboptimal model by 4.7% detec-tion AP and 3.4% segmentation AP on SSDD and by 3.0% detection AP and 2.4% segmentation AP on HRSID.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源