论文标题

费米子纠缠和相关​​性

Fermionic Entanglement and Correlation

论文作者

Ding, Lexin

论文摘要

纠缠在量子科学的众多领域中起着核心作用。但是,当人们偏离典型的“爱丽丝与鲍勃”的设置进入无法区分的费米子世界时,尚不清楚如何在这些相同的粒子中定义纠缠概念。我们努力恢复子系统的概念,或者从数学上讲,希尔伯特空间的张量产物结构,导致了两张定义费米尼纠缠的自然图片:粒子图片和模式图片。在粒子图片中,纠缠表征了费米子量子态与非相互作用的偏差,例如单个Slater决定因素。在模式图片中,我们通过指代费米子占据的轨道/模式的分配来恢复子系统的概念,这使我们能够自然地采用可区分成分之间的纠缠形式。这两张图片都揭示了费米子纠缠的基本和相互联系的方面,因此提供了在高度相关系统(例如原子和分子)中研究电子纠缠的精确工具。我们在这里展示了两种应用:i)解决分子解离极限中的相关悖论,ii)具有轨道纠缠的定量电子结构分析。

Entanglement plays a central role in numerous fields of quantum science. However, as one departs from the typical "Alice versus Bob" setting into the world of indistinguishable fermions, it is not immediately clear how the concept of entanglement is defined among these identical particles. Our endeavor to recover the notion of subsystems, or mathematically speaking, the tensor product structure of the Hilbert space, lead to two natural pictures of defining fermionic entanglement: the particle picture and the mode picture. In the particle picture, entanglement characterizes the deviation of a fermionic quantum state from the non-interacting ones, e.g., single Slater determinants. In the mode picture, we recover the notion of subsystems, by referring to the partitioning of the orbital/mode that the fermions occupy, which allows us to naturally adopt the formalism of entanglement between distinguishable constituents. Both pictures reveal essential and interconnected aspects of fermionic entanglement, and thus offer precise tools for studying electron entanglement in highly relevant systems such as atoms and molecules. We showcase here two applications: i) resolving the correlation paradox in the molecular dissociation limit, ii) quantitative electronic structure analysis with orbital entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源