论文标题
具有自旋轨道相互作用的量子通道中的电子传输:Rashba耦合的符号和应用到纳米线的影响
Electron transport in quantum channels with spin-orbit interaction: Effects of the sign of the Rashba coupling and applications to nanowires
论文作者
论文摘要
我们研究了Rashba旋转轨道偶联(RSOC)对通过量子相干性方面的单通道纳米线(NW)的电子传输的迹象的影响。我们表明,尽管在有限的长度NW中,与两个电极接触的均匀RSOC的RSOC符号不会影响电子传输,但在存在不均匀的RSOC和沿NW轴施加的磁场的情况下,情况可能会大不相同。通过分析不同RSOC的两个区域之间的界面传输,我们发现,如果两个区域具有相等的RSOC符号,那么无论旋转轨道能量与Zeeman Energy的比率如何,磁性间隙能量范围内的传输几乎都是完美的。相比之下,当两个区域的RSOC符号相反并且以RASHBA为主导的标志时,传输就会被抑制。此外,我们讨论了在现实的NW设置上的实现,其中两个RSOC区域是通过有限距离隔开的适当耦合门实现的。我们发现,低温NW电导表现出来自短距离行为的交叉,这在很大程度上取决于两个区域的相对RSOC符号与与此相对符号无关的较大距离振荡行为。因此,我们能够确定NW电导主要取决于RSOC的符号以及仅RSOC幅度很重要的条件。
We investigate the effects of the sign of the Rashba spin-orbit coupling (RSOC) on electron transmission through a single-channel Nanowire (NW) in the quantum coherent regime. We show that, while for a finite length NW with homogeneous RSOC contacted to two electrodes the sign of its RSOC does not affect electron transport, the situation can be quite different in the presence of an inhomogeneous RSOC and a magnetic field applied along the NW axis. By analyzing transport across an interface between two regions of different RSOC we find that, if the two regions have equal RSOC signs, the transmission within the magnetic gap energy range is almost perfect, regardless of the ratio of the spin-orbit energies to the Zeeman energy. In contrast, when the two regions have opposite RSOC signs and are Rashba-dominated, the transmission gets suppressed. Furthermore, we discuss the implementation on a realistic NW setup where two RSOC regions are realized with suitably coupled gates separated by a finite distance. We find that the low-temperature NW conductance exhibits a crossover from a short distance behavior that strongly depends on the relative RSOC sign of the two regions to a large distance oscillatory behavior that is independent of such relative sign. We are thus able to identify the conditions where the NW conductance mainly depends on the sign of the RSOC and the ones where only the RSOC magnitude matters.