论文标题
求解相关费米子的2D和3D晶格模型 - 将基质产品状态与平均场理论相结合
Solving 2D and 3D lattice models of correlated fermions -- combining matrix product states with mean field theory
论文作者
论文摘要
相关的电子状态是许多重要现象的根源,包括非常规超导性(USC),其中电子配对是由排斥相互作用引起的。计算相关电子的特性,例如使用定量方法的微观物理学有效,可靠地从微观物理学上有效而可靠地,对于几乎所有模型和材料来说,都有一个重大挑战。在这项理论工作中,我们将矩阵乘积状态(MP)与静态场(MF)相结合,以解决针对准二维(Q1D)系统的挑战:二维和三维(2D/3D)材料,包括弱耦合的相关一维相关的1D典型。首先开发了Q1D费米子的基态和热平衡特性的MPS+MF框架,并首先针对有吸引力的Hubbard Systems进行了验证,并通过分析场理论进一步增强。然后,我们将其部署为计算$ t_c $,以用于弱耦合,掺杂和排斥的哈伯德梯子的3D阵列中的超导率。因此,MPS+MF框架可以实现对USC和高$ T_C $超导率的可靠,定量和公正的研究 - 以及从微观参数的Fermionic Q1D系统中,可能以先前方法无法接收的方式。它打开了设计故意优化Q1D超导体的可能性,从超速气体的实验到合成新材料。
Correlated electron states are at the root of many important phenomena including unconventional superconductivity (USC), where electron-pairing arises from repulsive interactions. Computing the properties of correlated electrons, such as the critical temperature $T_c$ for the onset of USC, efficiently and reliably from the microscopic physics with quantitative methods remains a major challenge for almost all models and materials. In this theoretical work we combine matrix product states (MPS) with static mean field (MF) to provide a solution to this challenge for quasi-one-dimensional (Q1D) systems: Two- and three-dimensional (2D/3D) materials comprised of weakly coupled correlated 1D fermions. This MPS+MF framework for the ground state and thermal equilibrium properties of Q1D fermions is developed and validated for attractive Hubbard systems first, and further enhanced via analytical field theory. We then deploy it to compute $T_c$ for superconductivity in 3D arrays of weakly coupled, doped and repulsive Hubbard ladders. The MPS+MF framework thus enables the reliable, quantitative and unbiased study of USC and high-$T_c$ superconductivity - and potentially many more correlated phases - in fermionic Q1D systems from microscopic parameters, in ways inaccessible to previous methods. It opens the possibility of designing deliberately optimized Q1D superconductors, from experiments in ultracold gases to synthesizing new materials.