论文标题
使用ODE-RNN的移动MIMO频道预测:一种由物理启发的自适应方法
Mobile MIMO Channel Prediction with ODE-RNN: a Physics-Inspired Adaptive Approach
论文作者
论文摘要
对于多输入多输出(MIMO)无线通信系统,获得准确的通道状态信息(CSI)至关重要且具有挑战性。传统的通道估计方法无法保证移动CSI的准确性,而需要高信号开发。通过探索在特定通信环境中随机获得的一组历史CSI实例之间的固有相关性,渠道预测可以显着提高CSI准确性并在开销上节省信号传导。在本文中,我们提出了一种基于普通微分方程(ODE) - 孕神经网络(RNN)的新通道预测方法,以进行准确且灵活的移动MIMO通道预测。与现有的作品不同的作品使用顺序网络结构来探索观察到的数据之间的数值相关性,我们提出的方法试图代表通过具有ODE结构的特殊设计的连续学习网络来改变路径响应的隐式物理过程。由于学习网络的目标设计,我们提出的方法更适合CSI数据的数学功能,并享受更高的网络可解释性。实验结果表明,所提出的学习方法的表现优于现有方法,尤其是对于CSI序列和大通道测量误差的长时间间隔。
Obtaining accurate channel state information (CSI) is crucial and challenging for multiple-input multiple-output (MIMO) wireless communication systems. Conventional channel estimation method cannot guarantee the accuracy of mobile CSI while requires high signaling overhead. Through exploring the intrinsic correlation among a set of historical CSI instances randomly obtained in a certain communication environment, channel prediction can significantly increase CSI accuracy and save signaling overhead. In this paper, we propose a novel channel prediction method based on ordinary differential equation (ODE)-recurrent neural network (RNN) for accurate and flexible mobile MIMO channel prediction. Differing from existing works using sequential network structures for exploring the numerical correlation between observed data, our proposed method tries to represent the implicit physics process of path responses changing by specially designed continuous learning network with ODE structure. Due to the targeted design of learning network, our proposed method fits the mathematics feature of CSI data better and enjoy higher network interpretability. Experimental results show that the proposed learning approach outperforms existing methods, especially for long time interval of the CSI sequence and large channel measurement error.