论文标题
具有超宽带和进程测量的多个机器人的分布式范围
Distributed Ranging SLAM for Multiple Robots with Ultra-WideBand and Odometry Measurements
论文作者
论文摘要
为了在多个机器人系统中有效完成任务,必须解决的问题是同时定位和映射(SLAM)。激光雷达(LIDAR)(光检测和范围)由于其出色的精度而用于许多SLAM解决方案,但其性能在无特征环境(如隧道或长走廊)中降低。集中式大满贯解决了云服务器的问题,云服务器需要大量的计算资源,并且缺乏针对中央节点故障的鲁棒性。为了解决这些问题,我们提出了一个分布式的SLAM解决方案,以使用超宽带(UWB)范围和探测测量值估算一组机器人的轨迹。所提出的方法在机器人团队之间分配处理,并大大减轻了从集中式大满贯出现的计算问题。我们的解决方案通过在机器人处于近距离接近时在不同位置进行的UWB范围测量方法来最大程度地减少两个机器人之间的相对姿势(也称为循环闭合)。 UWB在视线条件下提供了良好的距离度量,但是由于机器人的噪声和无法预测的路径,检索精确的姿势估计仍然是一个挑战。为了处理可疑的循环封闭,我们使用成对的一致性最大化(PCM)来检查循环封闭的质量并执行异常拒绝。然后,在分布式姿势图优化(DPGO)模块中将过滤的环闭合与探光仪融合,以恢复机器人团队的完整轨迹。进行了广泛的实验以验证所提出的方法的有效性。
To accomplish task efficiently in a multiple robots system, a problem that has to be addressed is Simultaneous Localization and Mapping (SLAM). LiDAR (Light Detection and Ranging) has been used for many SLAM solutions due to its superb accuracy, but its performance degrades in featureless environments, like tunnels or long corridors. Centralized SLAM solves the problem with a cloud server, which requires a huge amount of computational resources and lacks robustness against central node failure. To address these issues, we present a distributed SLAM solution to estimate the trajectory of a group of robots using Ultra-WideBand (UWB) ranging and odometry measurements. The proposed approach distributes the processing among the robot team and significantly mitigates the computation concern emerged from the centralized SLAM. Our solution determines the relative pose (also known as loop closure) between two robots by minimizing the UWB ranging measurements taken at different positions when the robots are in close proximity. UWB provides a good distance measure in line-of-sight conditions, but retrieving a precise pose estimation remains a challenge, due to ranging noise and unpredictable path traveled by the robot. To deal with the suspicious loop closures, we use Pairwise Consistency Maximization (PCM) to examine the quality of loop closures and perform outlier rejections. The filtered loop closures are then fused with odometry in a distributed pose graph optimization (DPGO) module to recover the full trajectory of the robot team. Extensive experiments are conducted to validate the effectiveness of the proposed approach.