论文标题

聚集图神经网络的稳定性

Stability of Aggregation Graph Neural Networks

论文作者

Parada-Mayorga, Alejandro, Wang, Zhiyang, Gama, Fernando, Ribeiro, Alejandro

论文摘要

在本文中,我们研究了考虑基础图的扰动,聚集图神经网络(ag-gnn)的稳定性。 Agg-gnn是一种混合体系结构,在图表的节点上定义了信息,但是在图形移位运算符上进行了几次扩散后,在节点上的Euclidean CNN对其进行了处理。我们为与通用Agg-GNN关联的映射运算符得出稳定性界限,并指定了该操作员可以稳定变形的条件。我们证明稳定性边界是由在每个节点上作用的CNN的第一层中过滤器的属性定义的。此外,我们表明聚集数量,滤波器的选择性和稳定性常数的大小之间存在密切的关系。我们还得出结论,在Agg-gnns中,映射运算符的选择性仅在CNN阶段的第一层中与过滤器的属性相关。这显示了选择GNN的稳定性的实质性差异,其中所有层中过滤器的选择性受其稳定性的约束。我们提供了证实结果得出的结果的数值证据,并考虑了考虑不同幅度的扰动,测试了在现实生活施用场景中的行为。

In this paper we study the stability properties of aggregation graph neural networks (Agg-GNNs) considering perturbations of the underlying graph. An Agg-GNN is a hybrid architecture where information is defined on the nodes of a graph, but it is processed block-wise by Euclidean CNNs on the nodes after several diffusions on the graph shift operator. We derive stability bounds for the mapping operator associated to a generic Agg-GNN, and we specify conditions under which such operators can be stable to deformations. We prove that the stability bounds are defined by the properties of the filters in the first layer of the CNN that acts on each node. Additionally, we show that there is a close relationship between the number of aggregations, the filter's selectivity, and the size of the stability constants. We also conclude that in Agg-GNNs the selectivity of the mapping operators is tied to the properties of the filters only in the first layer of the CNN stage. This shows a substantial difference with respect to the stability properties of selection GNNs, where the selectivity of the filters in all layers is constrained by their stability. We provide numerical evidence corroborating the results derived, testing the behavior of Agg-GNNs in real life application scenarios considering perturbations of different magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源