论文标题

拓扑声子Polariton增强了双片纳米颗粒阵列中的辐射传热

Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry-André-Harper model

论文作者

Wang, B. X., Zhao, C. Y.

论文摘要

拓扑声子极地(TPHP)是有望在远程辐射传热,信息处理和红外传感中相关的光学模式,其拓扑保护有望使其稳健的存在和运输。在这项工作中,我们表明可以在一维(1D)双型碳化硅纳米颗粒(NP)链中支撑TPHP,并证明它们可以大大增强阵列的辐射热传递,而阵列比辐射的波长更长。通过在颗粒间距离上引入不一致或相称的调制,NP链可以被视为非对抗aubry-andré-Harper(AAH)模型的扩展。通过计算相对于创建合成维度的调制阶段的本征态光谱,我们证明,在这种类型的调制下,链链支持本地界限上界限上的非平凡拓扑模式,因为当前系统继承了二维整数量子厅系统的拓扑特性。在这种情况下,差距标记的定理和相应的Chern号可用于表征带隙和拓扑边缘模式的特征。基于一组偶极子的多体辐射传热理论,我们从理论上显示拓扑间隙和Midgap TPHP的存在可以大大增强辐射热传递的阵列比辐射的波长更长的时间。我们展示了充当合成维度的调制阶段如何通过诱导或消灭拓扑模式来定制辐射传热速率。我们还讨论了耗散在增强辐射传热中的作用。因此,这些发现为基于拓扑物理学概念来调整近场辐射传热提供了一条有趣的途径。

Topological phonon polaritons (TPhPs) are promising optical modes relevant in long-range radiative heat transfer, information processing and infrared sensing, whose topological protection is expected to enable their robust existence and transport. In this work we show that TPhPs can be supported in one-dimensional (1D) bichromatic silicon carbide nanoparticle (NP) chains, and demonstrate that they can considerably enhance radiative heat transfer for an array much longer than the wavelength of radiation. By introducing incommensurate or commensurate modulations on the interparticle distances, the NP chain can be regarded as an extension of the off-diagonal Aubry-André-Harper (AAH) model. By calculating the eigenstate spectra with respect to the modulation phase that creates a synthetic dimension, we demonstrate that under this type of modulation the chain supports nontrivial topological modes localized over the boundaries, since the present system inherits the topological property of two-dimensional integer quantum Hall systems. In this circumstance the gap-labeling theorem and corresponding Chern number can be used to characterize the features of band gaps and topological edge modes. Based on many-body radiative heat transfer theory for a set of dipoles, we theoretically show the presence of topological gaps and midgap TPhPs can substantially enhance radiative heat transfer for an array much longer than the wavelength of radiation. We show how the modulation phase that acts as the synthetic dimension can tailor the radiative heat transfer rate by inducing or annihilating topological modes. We also discuss the role of dissipation in the enhancement of radiative heat transfer. These findings therefore provide a fascinating route for tailoring near-field radiative heat transfer based on the concept of topological physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源