论文标题
来自密度功能计算的准确的Hellmann-Feynman部队具有增强的高斯基集
Accurate Hellmann-Feynman forces from density functional calculations with augmented Gaussian basis sets
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Hellmann-Feynman (HF) theorem provides a way to compute forces directly from the electron density, enabling efficient force calculations for large systems through machine learning (ML) models for the electron density. The main issue holding back the general acceptance of the HF approach for atom-centered basis sets is the well-known Pulay force which, if naively discarded, typically constitutes an error upwards of 10 eV/Ang in forces. In this work, we demonstrate that if a suitably augmented Gaussian basis set is used for density functional calculations, the Pulay force can be suppressed and HF forces can be computed as accurately as analytical forces with state-of-the-art basis sets, allowing geometry optimization and molecular dynamics to be reliably performed with HF forces. Our results pave a clear path forwards for the accurate and efficient simulation of large systems using ML densities and the HF theorem.